Zhaokui Zhu, Meng Meng, Sisi Mo, Xinyu Wang, Lixing Qiao
{"title":"M2 Microglia-Derived Exosomal miR-144-5p Attenuates White Matter Injury in Preterm Infants by Regulating the PTEN/AKT Pathway Through KLF12.","authors":"Zhaokui Zhu, Meng Meng, Sisi Mo, Xinyu Wang, Lixing Qiao","doi":"10.1007/s12033-025-01364-1","DOIUrl":null,"url":null,"abstract":"<p><p>Perinatal white matter injury (WMI), which is prevalent in premature infants, involves M2 microglia affecting oligodendrocyte precursor cells (OPCs) through exosomes, promoting OPC growth and reducing WMI. The molecular mechanism of WMI remains unclear, and this study explored the role of M2 microglia-derived exosomes in WMI. A tMCAO rat model was constructed to simulate WMI characteristics in vivo. Cresyl violet staining, neurobehavioral tests, rotarod tests, immunofluorescence and immunochemistry were used to assess the role of exos-derived miR-144-5p in pathological and neurological changes in rats. OGD/R cellular models were constructed to mimic WMI characteristics in vitro. CCK-8, TUNEL, Western blotting and immunofluorescence were used to assess the role of exos-derived miR-144-5p in OPC phenotypes. Rescue assays were used to assess the role of the PTEN/AKT pathway in miR-144-5p-mediated OPC phenotypes. Bioinformatics and mechanistic experiments were used to assess the association of PTEN or KLF12 with miR-144-5p in OPCs. M2-Exos suppressed cerebral injury and facilitated demyelination repair in rats post WMI. M2-Exos suppressed OGD/R-stimulated OPC apoptosis and facilitated OGD/R-stimulated OPC differentiation. M2-Exo-derived miR-144-5p suppressed OGD/R-stimulated OPC apoptosis and facilitated OGD/R-stimulated OPC differentiation. M2-Exo-derived miR-144-5p suppressed cerebral injury and facilitated demyelination repair in rats post WMI. MiR-144-5p suppressed OGD/R-stimulated OPC apoptosis and facilitated OGD/R-stimulated OPC differentiation through PTEN downregulation. MiR-144-5p targeted the KLF12 3'UTR to repress PTEN transcription in OPCs. M2 microglia secrete miR-144-5p to reduce WMI by targeting KLF12 in OPCs, inhibiting PTEN/AKT pathway activity, and offering potential targeted therapeutic insights for WMI.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-025-01364-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Perinatal white matter injury (WMI), which is prevalent in premature infants, involves M2 microglia affecting oligodendrocyte precursor cells (OPCs) through exosomes, promoting OPC growth and reducing WMI. The molecular mechanism of WMI remains unclear, and this study explored the role of M2 microglia-derived exosomes in WMI. A tMCAO rat model was constructed to simulate WMI characteristics in vivo. Cresyl violet staining, neurobehavioral tests, rotarod tests, immunofluorescence and immunochemistry were used to assess the role of exos-derived miR-144-5p in pathological and neurological changes in rats. OGD/R cellular models were constructed to mimic WMI characteristics in vitro. CCK-8, TUNEL, Western blotting and immunofluorescence were used to assess the role of exos-derived miR-144-5p in OPC phenotypes. Rescue assays were used to assess the role of the PTEN/AKT pathway in miR-144-5p-mediated OPC phenotypes. Bioinformatics and mechanistic experiments were used to assess the association of PTEN or KLF12 with miR-144-5p in OPCs. M2-Exos suppressed cerebral injury and facilitated demyelination repair in rats post WMI. M2-Exos suppressed OGD/R-stimulated OPC apoptosis and facilitated OGD/R-stimulated OPC differentiation. M2-Exo-derived miR-144-5p suppressed OGD/R-stimulated OPC apoptosis and facilitated OGD/R-stimulated OPC differentiation. M2-Exo-derived miR-144-5p suppressed cerebral injury and facilitated demyelination repair in rats post WMI. MiR-144-5p suppressed OGD/R-stimulated OPC apoptosis and facilitated OGD/R-stimulated OPC differentiation through PTEN downregulation. MiR-144-5p targeted the KLF12 3'UTR to repress PTEN transcription in OPCs. M2 microglia secrete miR-144-5p to reduce WMI by targeting KLF12 in OPCs, inhibiting PTEN/AKT pathway activity, and offering potential targeted therapeutic insights for WMI.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.