Mitochondrial segmentation and function prediction in live-cell images with deep learning.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-01-16 DOI:10.1038/s41467-025-55825-x
Yang Ding, Jintao Li, Jiaxin Zhang, Panpan Li, Hua Bai, Bin Fang, Haixiao Fang, Kai Huang, Guangyu Wang, Cameron J Nowell, Nicolas H Voelcker, Bo Peng, Lin Li, Wei Huang
{"title":"Mitochondrial segmentation and function prediction in live-cell images with deep learning.","authors":"Yang Ding, Jintao Li, Jiaxin Zhang, Panpan Li, Hua Bai, Bin Fang, Haixiao Fang, Kai Huang, Guangyu Wang, Cameron J Nowell, Nicolas H Voelcker, Bo Peng, Lin Li, Wei Huang","doi":"10.1038/s41467-025-55825-x","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial morphology and function are intrinsically linked, indicating the opportunity to predict functions by analyzing morphological features in live-cell imaging. Herein, we introduce MoDL, a deep learning algorithm for mitochondrial image segmentation and function prediction. Trained on a dataset of 20,000 manually labeled mitochondria from super-resolution (SR) images, MoDL achieves superior segmentation accuracy, enabling comprehensive morphological analysis. Furthermore, MoDL predicts mitochondrial functions by employing an ensemble learning strategy, powered by an extended training dataset of over 100,000 SR images, each annotated with functional data from biochemical assays. By leveraging this large dataset alongside data fine-tuning and retraining, MoDL demonstrates the ability to precisely predict functions of heterogeneous mitochondria from unseen cell types through small sample size training. Our results highlight the MoDL's potential to significantly impact mitochondrial research and drug discovery, illustrating its utility in exploring the complex relationship between mitochondrial form and function within a wide range of biological contexts.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"743"},"PeriodicalIF":14.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739661/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-55825-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondrial morphology and function are intrinsically linked, indicating the opportunity to predict functions by analyzing morphological features in live-cell imaging. Herein, we introduce MoDL, a deep learning algorithm for mitochondrial image segmentation and function prediction. Trained on a dataset of 20,000 manually labeled mitochondria from super-resolution (SR) images, MoDL achieves superior segmentation accuracy, enabling comprehensive morphological analysis. Furthermore, MoDL predicts mitochondrial functions by employing an ensemble learning strategy, powered by an extended training dataset of over 100,000 SR images, each annotated with functional data from biochemical assays. By leveraging this large dataset alongside data fine-tuning and retraining, MoDL demonstrates the ability to precisely predict functions of heterogeneous mitochondria from unseen cell types through small sample size training. Our results highlight the MoDL's potential to significantly impact mitochondrial research and drug discovery, illustrating its utility in exploring the complex relationship between mitochondrial form and function within a wide range of biological contexts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的活细胞图像线粒体分割与功能预测。
线粒体形态和功能是内在联系的,表明有机会通过分析活细胞成像中的形态特征来预测功能。本文介绍了一种用于线粒体图像分割和功能预测的深度学习算法MoDL。在来自超分辨率(SR)图像的20,000个人工标记的线粒体数据集上进行训练,MoDL实现了卓越的分割精度,实现了全面的形态分析。此外,MoDL通过采用集成学习策略来预测线粒体功能,该策略由超过100,000张SR图像的扩展训练数据集提供支持,每个图像都带有生化分析的功能数据注释。通过利用这个大型数据集以及数据微调和再训练,MoDL展示了通过小样本训练从看不见的细胞类型精确预测异质线粒体功能的能力。我们的研究结果突出了MoDL在线粒体研究和药物发现方面的潜力,说明了它在探索线粒体形式和功能之间的复杂关系方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Author Correction: Layer-by-layer phase transformation in Ti3O5 revealed by machine-learning molecular dynamics simulations Random resistive memory-based deep extreme point learning machine for unified visual processing Direct observation of chiral edge current at zero magnetic field in a magnetic topological insulator Unravelling genomic drivers of speciation in Musa through genome assemblies of wild banana ancestors Step-necking growth of silicon nanowire channels for high performance field effect transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1