Frontostriatal connectivity dynamically modulates the adaptation to environmental volatility

IF 4.7 2区 医学 Q1 NEUROIMAGING NeuroImage Pub Date : 2025-01-14 DOI:10.1016/j.neuroimage.2025.121027
Yuxuan Zhang , Nicholas T. Van Dam , Hui Ai , Pengfei Xu
{"title":"Frontostriatal connectivity dynamically modulates the adaptation to environmental volatility","authors":"Yuxuan Zhang ,&nbsp;Nicholas T. Van Dam ,&nbsp;Hui Ai ,&nbsp;Pengfei Xu","doi":"10.1016/j.neuroimage.2025.121027","DOIUrl":null,"url":null,"abstract":"<div><div>Humans adjust their learning strategies in changing environments by estimating the volatility of the reinforcement conditions. Here, we examine how volatility affects learning and the underlying functional brain organizations using a probabilistic reward reversal learning task. We found that the order of states was critically important; participants adjusted learning rate going from volatile to stable, but not from stable to volatile environments. Subjective volatility of the environment was encoded in the striatal reward system and its dynamic connections with the prefrontal control system. Flexibility, which captures the dynamic changes of network modularity in the brain, was higher in the environmental transition from volatile to stable than from stable to volatile. These findings suggest that behavioral adaptations and dynamic brain organizations in transitions between stable and volatile environments are asymmetric, providing critical insights into the way that people adapt to changing environments.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"307 ","pages":"Article 121027"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925000291","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Humans adjust their learning strategies in changing environments by estimating the volatility of the reinforcement conditions. Here, we examine how volatility affects learning and the underlying functional brain organizations using a probabilistic reward reversal learning task. We found that the order of states was critically important; participants adjusted learning rate going from volatile to stable, but not from stable to volatile environments. Subjective volatility of the environment was encoded in the striatal reward system and its dynamic connections with the prefrontal control system. Flexibility, which captures the dynamic changes of network modularity in the brain, was higher in the environmental transition from volatile to stable than from stable to volatile. These findings suggest that behavioral adaptations and dynamic brain organizations in transitions between stable and volatile environments are asymmetric, providing critical insights into the way that people adapt to changing environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
额纹状体连通性动态调节对环境波动的适应。
人类在不断变化的环境中通过估计强化条件的波动性来调整自己的学习策略。在这里,我们研究波动性如何影响学习和潜在的大脑功能组织使用概率奖励反转学习任务。我们发现状态的顺序是至关重要的;参与者调整学习率,从不稳定的环境到稳定的环境,而不是从稳定的环境到不稳定的环境。纹状体奖励系统及其与前额叶控制系统的动态联系编码了环境的主观波动。捕捉大脑网络模块化动态变化的灵活性在环境从易变到稳定的转变中高于从稳定到易变的转变。这些发现表明,在稳定和不稳定的环境之间转换的行为适应和动态大脑组织是不对称的,为人们适应不断变化的环境的方式提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
期刊最新文献
The modulation of selective attention and divided attention on cross-modal congruence Disruption of normal brain distribution of [18F]Nifene to α4β2* nicotinic acetylcholinergic receptors in old B6129SF2/J mice and transgenic 3xTg-AD mice model of Alzheimer's disease: In Vivo PET/CT imaging studies A simple clustering approach to map the human brain's cortical semantic network organization during task. Intrinsic Brain Mapping of Cognitive Abilities: A Multiple-Dataset Study on Intelligence and its Components. EEG microstate syntax analysis: A review of methodological challenges and advances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1