CoReSi: a GPU-based software for Compton camera reconstruction and simulation in collimator-free SPECT.

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL Physics in medicine and biology Pub Date : 2025-01-31 DOI:10.1088/1361-6560/adaacc
Vincent Lequertier, Étienne Testa, Voichiţa Maxim
{"title":"CoReSi: a GPU-based software for Compton camera reconstruction and simulation in collimator-free SPECT.","authors":"Vincent Lequertier, Étienne Testa, Voichiţa Maxim","doi":"10.1088/1361-6560/adaacc","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Compton cameras (CCs) are imaging devices that may improve observation of sources of<i>γ</i>photons. The images are obtained by solving a difficult inverse problem. We present CoReSi, a Compton reconstruction and simulation software implemented in Python and powered by PyTorch to leverage multi-threading and to easily interface with image processing and deep learning algorithms. The code is mainly dedicated to medical imaging and near-field experiments where images are reconstructed in 3D.<i>Approach.</i>The code was developed over several years in C++, with the initial version being proprietary. We have since redesigned and translated it into Python, adding new features to improve its adaptability and performances. This paper reviews the literature on CC mathematical models, explains the implementation strategies we have adopted and presents the features of CoReSi.<i>Main results.</i>The code includes state-of-the-art mathematical models from the literature, from the simplest, which allow limited knowledge of the sources, to more sophisticated ones with a finer description of the physics involved. It offers flexibility in defining the geometry of the CC and the detector materials. Several identical cameras can be considered at arbitrary positions in space. The main functions of the code are dedicated to the computation of the system matrix, leading to the forward and backward projector operators. These are the cornerstones of any image reconstruction algorithm. A simplified Monte Carlo data simulation function is provided to facilitate code development and fast prototyping.<i>Significance.</i>As far as we know, there is no open source code for CC reconstruction, except for MEGAlib, which is mainly dedicated to astronomy applications. This code aims to facilitate research as more and more teams from different communities such as applied mathematics, electrical engineering, physics, medical physics get involved in CC studies. Implementation with PyTorch will also facilitate interfacing with deep learning algorithms.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adaacc","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Compton cameras (CCs) are imaging devices that may improve observation of sources ofγphotons. The images are obtained by solving a difficult inverse problem. We present CoReSi, a Compton reconstruction and simulation software implemented in Python and powered by PyTorch to leverage multi-threading and to easily interface with image processing and deep learning algorithms. The code is mainly dedicated to medical imaging and near-field experiments where images are reconstructed in 3D.Approach.The code was developed over several years in C++, with the initial version being proprietary. We have since redesigned and translated it into Python, adding new features to improve its adaptability and performances. This paper reviews the literature on CC mathematical models, explains the implementation strategies we have adopted and presents the features of CoReSi.Main results.The code includes state-of-the-art mathematical models from the literature, from the simplest, which allow limited knowledge of the sources, to more sophisticated ones with a finer description of the physics involved. It offers flexibility in defining the geometry of the CC and the detector materials. Several identical cameras can be considered at arbitrary positions in space. The main functions of the code are dedicated to the computation of the system matrix, leading to the forward and backward projector operators. These are the cornerstones of any image reconstruction algorithm. A simplified Monte Carlo data simulation function is provided to facilitate code development and fast prototyping.Significance.As far as we know, there is no open source code for CC reconstruction, except for MEGAlib, which is mainly dedicated to astronomy applications. This code aims to facilitate research as more and more teams from different communities such as applied mathematics, electrical engineering, physics, medical physics get involved in CC studies. Implementation with PyTorch will also facilitate interfacing with deep learning algorithms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CoReSi:一个基于gpu的软件,用于康普顿相机重建和模拟无准直器SPECT。
康普顿照相机是一种成像设备,可以改善对γ光子源的观察。我们介绍了CoReSi,一个用Python实现的康普顿重构和仿真软件,由PyTorch提供支持,利用多线程,轻松地与图像处理和深度学习算法接口。该代码主要用于医学成像和近场实验,其中图像以3D形式重建。它包括来自文献的最先进的数学模型,从最简单的,允许对来源的有限知识,到更复杂的,对所涉及的物理更精细的描述。它在定义康普顿相机和探测器材料的几何形状方面提供了灵活性。可以考虑在空间的任意位置放置几个相同的相机。该代码的主要功能是致力于系统矩阵的计算,导致前向和后向投影运算。这些是任何图像重建算法的基石。提供了简化的蒙特卡罗数据模拟功能,以方便代码开发和快速原型。在论文被接受后,代码将在开源许可下发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
期刊最新文献
Initial results of the Hyperion IIDPET insert for simultaneous PET-MRI applied to atherosclerotic plaque imaging in New-Zealand white rabbits. A multiplexing method based on multidimensional readout method. Diffusion transformer model with compact prior for low-dose PET reconstruction. A dual-domain network with division residual connection and feature fusion for CBCT scatter correction. A ConvLSTM-based model for predicting thermal damage during laser interstitial thermal therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1