Revisiting the safety limit in magnetic nanoparticle hyperthermia: insights from eddy current induced heating.

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL Physics in medicine and biology Pub Date : 2025-01-29 DOI:10.1088/1361-6560/adaad0
Konstantinos Pilpilidis, George Tsanidis, Maria Anastasia Rouni, John Markakis, Theodoros Samaras
{"title":"Revisiting the safety limit in magnetic nanoparticle hyperthermia: insights from eddy current induced heating.","authors":"Konstantinos Pilpilidis, George Tsanidis, Maria Anastasia Rouni, John Markakis, Theodoros Samaras","doi":"10.1088/1361-6560/adaad0","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Magnetic nanoparticle hyperthermia (MNH) emerges as a promising therapeutic strategy for cancer treatment, leveraging alternating magnetic fields (AMFs) to induce localized heating through magnetic nanoparticles. However, the interaction of AMFs with biological tissues leads to non-specific heating caused by eddy currents, triggering thermoregulatory responses and complex thermal gradients throughout the body of the patient. While previous studies have implemented the Atkinson-Brezovich limit to mitigate potential harm, recent research underscores discrepancies between this threshold and clinical outcomes, necessitating a re-evaluation of this safety limit. Therefore, in this study, through electromagnetic (EM) simulations, the complex interaction between AMFs and anatomical models was investigated.<i>Approach.</i>In particular, we considered a circular coil configuration placed at different positions along the craniocaudal axis of various anatomical human models. The excitation current was normalized, at different frequencies, to meet the basic restriction of local 10 g-averaged specific energy absorption rate (SAR) in the human models, as defined by the exposure guidelines of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the standard IEC 60601-2-33 of the International Electrotechnical Commission (IEC).<i>Main results.</i>The resulting permissible magnetic field strength values, for the reference levels set by the ICNIRP 2020 guidelines, emerged to be up to approximately 1.4 and 3 times less than that defined in the Atkinson-Brezovich limit. The widely used limit was found to align more closely with the first level of controlled operating mode defined in the IEC 60601-2-33 standard.<i>Significance.</i>The results indicate that the permissible magnetic field amplitude during MNH treatment should be much lower than that in the Atkinson-Brezovich limit. This study offers valuable insights into the role of computational simulations in advancing the potential to establish a reliable metric for safety evaluation and monitoring within the clinical framework of MNH.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adaad0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Magnetic nanoparticle hyperthermia (MNH) emerges as a promising therapeutic strategy for cancer treatment, leveraging alternating magnetic fields (AMFs) to induce localized heating through magnetic nanoparticles. However, the interaction of AMFs with biological tissues leads to non-specific heating caused by eddy currents, triggering thermoregulatory responses and complex thermal gradients throughout the body of the patient. While previous studies have implemented the Atkinson-Brezovich limit to mitigate potential harm, recent research underscores discrepancies between this threshold and clinical outcomes, necessitating a re-evaluation of this safety limit. Therefore, in this study, through electromagnetic (EM) simulations, the complex interaction between AMFs and anatomical models was investigated.Approach.In particular, we considered a circular coil configuration placed at different positions along the craniocaudal axis of various anatomical human models. The excitation current was normalized, at different frequencies, to meet the basic restriction of local 10 g-averaged specific energy absorption rate (SAR) in the human models, as defined by the exposure guidelines of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the standard IEC 60601-2-33 of the International Electrotechnical Commission (IEC).Main results.The resulting permissible magnetic field strength values, for the reference levels set by the ICNIRP 2020 guidelines, emerged to be up to approximately 1.4 and 3 times less than that defined in the Atkinson-Brezovich limit. The widely used limit was found to align more closely with the first level of controlled operating mode defined in the IEC 60601-2-33 standard.Significance.The results indicate that the permissible magnetic field amplitude during MNH treatment should be much lower than that in the Atkinson-Brezovich limit. This study offers valuable insights into the role of computational simulations in advancing the potential to establish a reliable metric for safety evaluation and monitoring within the clinical framework of MNH.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重新审视磁性纳米粒子热疗的安全限制:来自涡流感应加热的见解。
目的:磁性纳米颗粒热疗(MNH)是一种很有前景的癌症治疗策略,利用交变磁场(AMFs)通过磁性纳米颗粒(MNPs)诱导局部加热。然而,AMFs与生物组织的相互作用导致涡流引起的非特异性加热,引发患者全身的热调节反应和复杂的热梯度。虽然以前的研究已经实施了Atkinson-Brezovich极限来减轻潜在的危害,但最近的研究强调了该阈值与临床结果之间的差异,需要重新评估该安全极限。因此,在本研究中,通过电磁(EM)模拟,研究了AMFs与解剖模型之间复杂的相互作用。& # xD;方法。特别是,我们考虑了一个圆形线圈配置放置在不同位置的颅-尾轴的各种解剖人体模型。根据国际非电离辐射防护委员会(ICNIRP 2020)的暴露指南和国际电工委员会(IEC 2022)的标准IEC 60601-2-33的定义,在不同频率下对激励电流进行归一化,以满足人体模型局部10g平均比能量吸收率(SAR)的基本限制。& # xD;主要结果。由此产生的ICNIRP(2020)为职业和一般公众暴露设定的参考水平的允许磁场强度值,比阿特金森-布雷佐维奇限值所定义的值低约1.4和3倍。广泛使用的极限被发现更接近于IEC 60601-2-33 (IEC 2022)中定义的第一级受控操作模式。& # xD;意义。结果表明,MNH处理过程中允许的磁场幅值应远低于Atkinson-Brezovich极限。这项研究为计算模拟在推进MNH临床框架内建立安全评估和监测可靠指标的潜力方面的作用提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
期刊最新文献
Initial results of the Hyperion IIDPET insert for simultaneous PET-MRI applied to atherosclerotic plaque imaging in New-Zealand white rabbits. A multiplexing method based on multidimensional readout method. Diffusion transformer model with compact prior for low-dose PET reconstruction. A dual-domain network with division residual connection and feature fusion for CBCT scatter correction. A ConvLSTM-based model for predicting thermal damage during laser interstitial thermal therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1