A systematic approach for scalable purification of virus-like particles

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Protein expression and purification Pub Date : 2025-01-17 DOI:10.1016/j.pep.2025.106664
Enoch Y. Park , Robert Minkner
{"title":"A systematic approach for scalable purification of virus-like particles","authors":"Enoch Y. Park ,&nbsp;Robert Minkner","doi":"10.1016/j.pep.2025.106664","DOIUrl":null,"url":null,"abstract":"<div><div>Virus-like particles (VLPs) are increasingly recognized as promising vaccine candidates and drug-delivery platforms because they do not contain genetic materials, mimic viral structures, and possess strong antigenic properties. Various hosts, including microorganisms, yeast, and insect cells, are commonly used for VLP expression. Recently, silkworms have emerged as a significant host for producing VLPs, providing a cost-effective and straightforward approach for large-scale expression. Despite the progress in VLP expression technology, purification methods for VLPs are still in their infancy and often rely on unscalable ultracentrifugation techniques. Moreover, VLP purification represents a substantial portion of the overall production cost, highlighting the urgent need for efficient and scalable downstream processing methods to overcome the current challenges in VLP production. Considering their differing structures and properties, this review systematically summarizes the published results of scalable downstream processes for both enveloped and non-enveloped VLPs. Its aim is to provide a comprehensive overview and significantly contribute to developing future VLP production for pharmaceutical applications, thereby guiding and inspiring further research in this field.</div></div>","PeriodicalId":20757,"journal":{"name":"Protein expression and purification","volume":"228 ","pages":"Article 106664"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein expression and purification","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046592825000063","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Virus-like particles (VLPs) are increasingly recognized as promising vaccine candidates and drug-delivery platforms because they do not contain genetic materials, mimic viral structures, and possess strong antigenic properties. Various hosts, including microorganisms, yeast, and insect cells, are commonly used for VLP expression. Recently, silkworms have emerged as a significant host for producing VLPs, providing a cost-effective and straightforward approach for large-scale expression. Despite the progress in VLP expression technology, purification methods for VLPs are still in their infancy and often rely on unscalable ultracentrifugation techniques. Moreover, VLP purification represents a substantial portion of the overall production cost, highlighting the urgent need for efficient and scalable downstream processing methods to overcome the current challenges in VLP production. Considering their differing structures and properties, this review systematically summarizes the published results of scalable downstream processes for both enveloped and non-enveloped VLPs. Its aim is to provide a comprehensive overview and significantly contribute to developing future VLP production for pharmaceutical applications, thereby guiding and inspiring further research in this field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种可扩展的病毒样颗粒纯化的系统方法。
病毒样颗粒(vlp)越来越被认为是有希望的疫苗候选物和药物递送平台,因为它们不含遗传物质,模拟病毒结构,并具有很强的抗原性。各种宿主,包括微生物、酵母和昆虫细胞,通常用于VLP表达。最近,蚕已经成为生产VLPs的重要宿主,为大规模表达提供了一种成本效益高且直接的方法。尽管VLP表达技术取得了进展,但VLP的纯化方法仍处于起步阶段,通常依赖于不可扩展的超离心技术。此外,VLP净化占整体生产成本的很大一部分,这凸显了对高效、可扩展的下游处理方法的迫切需求,以克服当前VLP生产中的挑战。考虑到它们不同的结构和特性,本文系统地总结了包膜和非包膜VLPs可扩展下游工艺的已发表结果。它的目的是提供一个全面的概述,并显著有助于发展未来的VLP生产制药应用,从而指导和激励进一步的研究在这一领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Protein expression and purification
Protein expression and purification 生物-生化研究方法
CiteScore
3.70
自引率
6.20%
发文量
120
审稿时长
32 days
期刊介绍: Protein Expression and Purification is an international journal providing a forum for the dissemination of new information on protein expression, extraction, purification, characterization, and/or applications using conventional biochemical and/or modern molecular biological approaches and methods, which are of broad interest to the field. The journal does not typically publish repetitive examples of protein expression and purification involving standard, well-established, methods. However, exceptions might include studies on important and/or difficult to express and/or purify proteins and/or studies that include extensive protein characterization, which provide new, previously unpublished information.
期刊最新文献
Production of recombinant coiled coil silk proteins for materials synthesis High-affinity nanobodies targeting IL-12B for the detection of fluorescence resonance energy transfer. Optimization on cell lysis and capture process of human adenovirus type 5 produced in suspension HEK293 cells Expression and biochemical characterization of a novel NAD+-dependent xylitol dehydrogenase from the plant endophytic fungus Trichoderma gamsii Differentially labeled flaviviral protease-cofactor complex for NMR spectroscopic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1