Cripto-1 acts as a molecular bridge linking nodal to ALK4 via distinct structural domains.

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Protein Science Pub Date : 2025-02-01 DOI:10.1002/pro.70034
Kit-Yee Chu, Amberly N Crawford, Bradon S Krah, Vijayalakshmi Thamilselvan, Anjali Malik, Nina A Aitas, Erik Martinez-Hackert
{"title":"Cripto-1 acts as a molecular bridge linking nodal to ALK4 via distinct structural domains.","authors":"Kit-Yee Chu, Amberly N Crawford, Bradon S Krah, Vijayalakshmi Thamilselvan, Anjali Malik, Nina A Aitas, Erik Martinez-Hackert","doi":"10.1002/pro.70034","DOIUrl":null,"url":null,"abstract":"<p><p>The TGF-β family ligand Nodal is an essential regulator of embryonic development, orchestrating key processes such as germ layer specification and body axis formation through activation of SMAD2/3-mediated signaling. Significantly, this activation requires the co-receptor Cripto-1. However, despite their essential roles in embryogenesis, the molecular mechanism through which Cripto-1 enables Nodal to activate the SMAD2/3 pathway has remained elusive. Intriguingly, Cripto-1 also has been shown to antagonize other TGF-β family ligands, raising questions about its diverse functions. To clarify how Cripto-1 modulates TGF-β signaling, we integrated AlphaFold3 modeling, surface plasmon resonance (SPR)-based protein-protein interaction analysis, domain-specific anti-Cripto-1 antibodies, and functional studies in NTERA-2 cells. In contrast to canonical TGF-β signaling, where ligands bridge type I and type II receptors for activation, Nodal, bound to the type II receptor, utilizes Cripto-1 to recruit the type I receptor ALK4, forming a unique ternary complex for SMAD2/3 activation. Our molecular characterization of Cripto-1-mediated Nodal signaling clarifies the unique role of this enigmatic co-receptor and advances our understanding of signaling regulation within the TGF-β family. These insights have potential implications for both developmental biology and cancer research.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 2","pages":"e70034"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751877/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70034","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The TGF-β family ligand Nodal is an essential regulator of embryonic development, orchestrating key processes such as germ layer specification and body axis formation through activation of SMAD2/3-mediated signaling. Significantly, this activation requires the co-receptor Cripto-1. However, despite their essential roles in embryogenesis, the molecular mechanism through which Cripto-1 enables Nodal to activate the SMAD2/3 pathway has remained elusive. Intriguingly, Cripto-1 also has been shown to antagonize other TGF-β family ligands, raising questions about its diverse functions. To clarify how Cripto-1 modulates TGF-β signaling, we integrated AlphaFold3 modeling, surface plasmon resonance (SPR)-based protein-protein interaction analysis, domain-specific anti-Cripto-1 antibodies, and functional studies in NTERA-2 cells. In contrast to canonical TGF-β signaling, where ligands bridge type I and type II receptors for activation, Nodal, bound to the type II receptor, utilizes Cripto-1 to recruit the type I receptor ALK4, forming a unique ternary complex for SMAD2/3 activation. Our molecular characterization of Cripto-1-mediated Nodal signaling clarifies the unique role of this enigmatic co-receptor and advances our understanding of signaling regulation within the TGF-β family. These insights have potential implications for both developmental biology and cancer research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cripto-1通过不同的结构域作为连接nodal和ALK4的分子桥梁。
TGF-β家族配体Nodal是胚胎发育的重要调节因子,通过激活smad2 /3介导的信号传导,协调胚层规范和体轴形成等关键过程。值得注意的是,这种激活需要共受体Cripto-1。然而,尽管它们在胚胎发生中起着重要作用,但Cripto-1使Nodal激活SMAD2/3通路的分子机制仍然难以捉摸。有趣的是,Cripto-1也被证明可以拮抗其他TGF-β家族配体,这引发了对其多种功能的质疑。为了阐明Cripto-1如何调节TGF-β信号,我们整合了AlphaFold3模型、基于表面等离子体共振(SPR)的蛋白-蛋白相互作用分析、区域特异性抗Cripto-1抗体和NTERA-2细胞的功能研究。典型的TGF-β信号通过配体桥接I型和II型受体进行激活,而与II型受体结合的Nodal利用Cripto-1招募I型受体ALK4,形成独特的三元复合物来激活SMAD2/3。我们对cripto -1介导的节点信号的分子表征阐明了这种神秘的共受体的独特作用,并推进了我们对TGF-β家族信号调节的理解。这些见解对发育生物学和癌症研究都有潜在的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Protein Science
Protein Science 生物-生化与分子生物学
CiteScore
12.40
自引率
1.20%
发文量
246
审稿时长
1 months
期刊介绍: Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution. Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics. The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication. Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).
期刊最新文献
A functional helix shuffled variant of the B domain of Staphylococcus aureus. AFFIPred: AlphaFold2 structure-based Functional Impact Prediction of missense variations. AggNet: Advancing protein aggregation analysis through deep learning and protein language model. Allosteric modulation of NF1 GAP: Differential distributions of catalytically competent populations in loss-of-function and gain-of-function mutants. Citrullination at the N-terminal region of MDM2 by the PADI4 enzyme.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1