Empagliflozin Reduces High Glucose-Induced Cardiomyopathy in hiPSC-Derived Cardiomyocytes : Glucose-induced Lipotoxicity in hiPSC-Derived Cardiomyocytes.

IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING Stem Cell Reviews and Reports Pub Date : 2025-01-22 DOI:10.1007/s12015-024-10839-8
Hsiu-Hui Tsai, Fu-Chih Hsiao, Alice L Yu, Jyuhn-Huarng Juang, John Yu, Pao-Hsien Chu
{"title":"Empagliflozin Reduces High Glucose-Induced Cardiomyopathy in hiPSC-Derived Cardiomyocytes : Glucose-induced Lipotoxicity in hiPSC-Derived Cardiomyocytes.","authors":"Hsiu-Hui Tsai, Fu-Chih Hsiao, Alice L Yu, Jyuhn-Huarng Juang, John Yu, Pao-Hsien Chu","doi":"10.1007/s12015-024-10839-8","DOIUrl":null,"url":null,"abstract":"<p><p>Human-induced pluripotent stem cell (hiPSC) technology has been applied in pathogenesis studies, drug screening, tissue engineering, and stem cell therapy, and patient-specific hiPSC-derived cardiomyocytes (hiPSC-CMs) have shown promise in disease modeling, including diabetic cardiomyopathy. High glucose (HG) treatment induces lipotoxicity in hiPSC-CMs, as evidenced by changes in cell size, beating rate, calcium handling, and lipid accumulation. Empagliflozin, an SGLT2 inhibitor, effectively mitigates the hypertrophic changes, abnormal calcium handling, and contractility impairment induced by HG. Glucose concentration influences SGLT2 expression in cardiomyocytes, highlighting its potential role in diabetic cardiomyopathy. These findings support the potential utility of hiPSC-CMs in studying diabetic cardiomyopathy and the efficacy of empagliflozin in ameliorating HG-induced cardiomyocyte dysfunction. Such research may advance developments in precision medicine and therapeutic interventions for patients with diabetic cardiomyopathy.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reviews and Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12015-024-10839-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Human-induced pluripotent stem cell (hiPSC) technology has been applied in pathogenesis studies, drug screening, tissue engineering, and stem cell therapy, and patient-specific hiPSC-derived cardiomyocytes (hiPSC-CMs) have shown promise in disease modeling, including diabetic cardiomyopathy. High glucose (HG) treatment induces lipotoxicity in hiPSC-CMs, as evidenced by changes in cell size, beating rate, calcium handling, and lipid accumulation. Empagliflozin, an SGLT2 inhibitor, effectively mitigates the hypertrophic changes, abnormal calcium handling, and contractility impairment induced by HG. Glucose concentration influences SGLT2 expression in cardiomyocytes, highlighting its potential role in diabetic cardiomyopathy. These findings support the potential utility of hiPSC-CMs in studying diabetic cardiomyopathy and the efficacy of empagliflozin in ameliorating HG-induced cardiomyocyte dysfunction. Such research may advance developments in precision medicine and therapeutic interventions for patients with diabetic cardiomyopathy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
恩格列净降低高糖诱导的hipsc源性心肌细胞心肌病:葡萄糖诱导的hipsc源性心肌细胞脂毒性
人诱导多能干细胞(hiPSC)技术已被应用于发病机制研究、药物筛选、组织工程和干细胞治疗,患者特异性hiPSC来源的心肌细胞(hiPSC- cms)在疾病建模,包括糖尿病心肌病中显示出前景。高糖(HG)处理诱导hiPSC-CMs中的脂肪毒性,这可以通过细胞大小、跳动速率、钙处理和脂质积累的变化来证明。恩格列清是一种SGLT2抑制剂,可有效减轻HG引起的肥厚变化、钙处理异常和收缩性损伤。葡萄糖浓度影响心肌细胞中SGLT2的表达,突出其在糖尿病性心肌病中的潜在作用。这些发现支持hiPSC-CMs在研究糖尿病心肌病和恩格列净改善hg诱导的心肌细胞功能障碍方面的潜在效用。这些研究可能会促进糖尿病心肌病患者的精准医学和治疗干预的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Stem Cell Reviews and Reports
Stem Cell Reviews and Reports 医学-细胞生物学
CiteScore
9.30
自引率
4.20%
发文量
0
审稿时长
3 months
期刊介绍: The purpose of Stem Cell Reviews and Reports is to cover contemporary and emerging areas in stem cell research and regenerative medicine. The journal will consider for publication: i) solicited or unsolicited reviews of topical areas of stem cell biology that highlight, critique and synthesize recent important findings in the field. ii) full length and short reports presenting original experimental work. iii) translational stem cell studies describing results of clinical trials using stem cells as therapeutics. iv) papers focused on diseases of stem cells. v) hypothesis and commentary articles as opinion-based pieces in which authors can propose a new theory, interpretation of a controversial area in stem cell biology, or a stem cell biology question or paradigm. These articles contain more speculation than reviews, but they should be based on solid rationale. vi) protocols as peer-reviewed procedures that provide step-by-step descriptions, outlined in sufficient detail, so that both experts and novices can apply them to their own research. vii) letters to the editor and correspondence. In order to facilitate this exchange of scientific information and exciting novel ideas, the journal has created five thematic sections, focusing on: i) the role of adult stem cells in tissue regeneration; ii) progress in research on induced pluripotent stem cells, embryonic stem cells and mechanism governing embryogenesis and tissue development; iii) the role of microenvironment and extracellular microvesicles in directing the fate of stem cells; iv) mechanisms of stem cell trafficking, stem cell mobilization and homing with special emphasis on hematopoiesis; v) the role of stem cells in aging processes and cancerogenesis.
期刊最新文献
Identification of Cell Fate Determining Transcription Factors for Generating Brain Endothelial Cells. Empagliflozin Reduces High Glucose-Induced Cardiomyopathy in hiPSC-Derived Cardiomyocytes : Glucose-induced Lipotoxicity in hiPSC-Derived Cardiomyocytes. Unlocking a Decade of Research on Embryo-Derived Extracellular Vesicles: Discoveries Made and Paths Ahead. Phenotypic Characterisation of Bone Marrow-Derived Haematopoietic Stem/Progenitor Cells from HIV-Infected Individuals. Quality and Regulatory Requirements for the Manufacture of Master Cell Banks of Clinical Grade iPSCs: The EU and USA Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1