Islam M Saadeldin, Krishna Chaitanya Pavani, Juri Gnagnarelli, Seif Ehab, Abdullah M Assiri, Ann Van Soom
{"title":"Unlocking a Decade of Research on Embryo-Derived Extracellular Vesicles: Discoveries Made and Paths Ahead.","authors":"Islam M Saadeldin, Krishna Chaitanya Pavani, Juri Gnagnarelli, Seif Ehab, Abdullah M Assiri, Ann Van Soom","doi":"10.1007/s12015-025-10844-5","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past decade, research on embryo-derived extracellular vesicles (EVs) has unveiled their critical roles in embryonic development and intercellular communication. EVs secreted by embryos are nanoscale lipid bilayer vesicles that carry bioactive cargo, including proteins, lipids, RNAs, and DNAs, reflecting the physiological state of the source cells. These vesicles facilitate paracrine and autocrine signaling, influencing key processes such as cell differentiation, embryo viability, and endometrial receptivity. Studies reveal that EVs can traverse the zona pellucida, transferring molecular signals that enhance blastocyst formation and support embryo-maternal crosstalk. EVs have emerged as non-invasive biomarkers for embryo quality, with their cargo providing insights into genetic integrity and developmental competence. Advances in isolation and characterization techniques have identified specific microRNA (miRNAs) and transcription factors within EVs, offering potential for use in preimplantation genetic screening (PGS) and sex determination. Moreover, EV-mediated interactions with the maternal environment are critical for successful implantation, as they modulate gene expression and immune responses in endometrial and oviductal cells. Despite these advancements, challenges persist, including the standardization of EV isolation methods and the low yield of EVs DNA from spent culture media. Future research should aim to refine analytical techniques, explore EV-miRNA profiling, and investigate the mechanisms underlying EV-mediated signaling. By addressing these gaps, EVs could revolutionize embryo selection and reproductive technologies, offering new strategies to improve outcomes in assisted reproduction and animal breeding.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reviews and Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12015-025-10844-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past decade, research on embryo-derived extracellular vesicles (EVs) has unveiled their critical roles in embryonic development and intercellular communication. EVs secreted by embryos are nanoscale lipid bilayer vesicles that carry bioactive cargo, including proteins, lipids, RNAs, and DNAs, reflecting the physiological state of the source cells. These vesicles facilitate paracrine and autocrine signaling, influencing key processes such as cell differentiation, embryo viability, and endometrial receptivity. Studies reveal that EVs can traverse the zona pellucida, transferring molecular signals that enhance blastocyst formation and support embryo-maternal crosstalk. EVs have emerged as non-invasive biomarkers for embryo quality, with their cargo providing insights into genetic integrity and developmental competence. Advances in isolation and characterization techniques have identified specific microRNA (miRNAs) and transcription factors within EVs, offering potential for use in preimplantation genetic screening (PGS) and sex determination. Moreover, EV-mediated interactions with the maternal environment are critical for successful implantation, as they modulate gene expression and immune responses in endometrial and oviductal cells. Despite these advancements, challenges persist, including the standardization of EV isolation methods and the low yield of EVs DNA from spent culture media. Future research should aim to refine analytical techniques, explore EV-miRNA profiling, and investigate the mechanisms underlying EV-mediated signaling. By addressing these gaps, EVs could revolutionize embryo selection and reproductive technologies, offering new strategies to improve outcomes in assisted reproduction and animal breeding.
期刊介绍:
The purpose of Stem Cell Reviews and Reports is to cover contemporary and emerging areas in stem cell research and regenerative medicine. The journal will consider for publication:
i) solicited or unsolicited reviews of topical areas of stem cell biology that highlight, critique and synthesize recent important findings in the field.
ii) full length and short reports presenting original experimental work.
iii) translational stem cell studies describing results of clinical trials using stem cells as therapeutics.
iv) papers focused on diseases of stem cells.
v) hypothesis and commentary articles as opinion-based pieces in which authors can propose a new theory, interpretation of a controversial area in stem cell biology, or a stem cell biology question or paradigm. These articles contain more speculation than reviews, but they should be based on solid rationale.
vi) protocols as peer-reviewed procedures that provide step-by-step descriptions, outlined in sufficient detail, so that both experts and novices can apply them to their own research.
vii) letters to the editor and correspondence.
In order to facilitate this exchange of scientific information and exciting novel ideas, the journal has created five thematic sections, focusing on:
i) the role of adult stem cells in tissue regeneration;
ii) progress in research on induced pluripotent stem cells, embryonic stem cells and mechanism governing embryogenesis and tissue development;
iii) the role of microenvironment and extracellular microvesicles in directing the fate of stem cells;
iv) mechanisms of stem cell trafficking, stem cell mobilization and homing with special emphasis on hematopoiesis;
v) the role of stem cells in aging processes and cancerogenesis.