Disruptive multiple cell death pathways of bisphenol-A.

IF 3.2 4区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics Toxicology Mechanisms and Methods Pub Date : 2025-01-15 DOI:10.1080/15376516.2024.2449423
Yukta S, Milan K L, Kannan Harithpriya, Cai Zong, S Sahabudeen, Gaku Ichihara, K M Ramkumar
{"title":"Disruptive multiple cell death pathways of bisphenol-A.","authors":"Yukta S, Milan K L, Kannan Harithpriya, Cai Zong, S Sahabudeen, Gaku Ichihara, K M Ramkumar","doi":"10.1080/15376516.2024.2449423","DOIUrl":null,"url":null,"abstract":"<p><p>Endocrine-disrupting chemicals (EDCs) significantly contribute to health issues by interfering with hormonal functions. Bisphenol A (BPA), a prominent EDC, is extensively utilized as a monomer and plasticizer in producing polycarbonate plastic and epoxy resins, making it one of the highest-demanded chemicals in commercial use. This is the major component used in plastic products, including bottles, containers, storage items, and food serving ware. Exposure of BPA happens through oral, respiratory, transdermal routes and eye contact. As an EDC, BPA disrupts hormonal binding, leading to various health problems, such as cancers, reproductive abnormalities, metabolic syndrome, immune dysfunction, neurological effects, cardiovascular problems, respiratory issues, and obesity. BPA mimics the hormone estrogen but exhibits a weak affinity for estrogen receptors. This weak binding affinity triggers multiple cell death pathways, including necroptosis, pyroptosis, apoptosis, ferroptosis, and autophagy, across different cell types. Numerous clinical, <i>in-vitro</i>, and <i>in-vivo</i> experiments have demonstrated that BPA exposure results in unfavorable health effects. This review highlights the mechanisms of cell death pathways initiated through BPA exposure and the associated negative health consequences. The extensive use of BPA and its frequent detection in environmental and biological models underscore the urgent need for further investigation into its effects and the development of safe alternatives. Addressing the health risks posed by BPA involves a comprehensive approach that includes reducing exposure and finding novel substitutes to lessen its detrimental impact on humans.</p>","PeriodicalId":23177,"journal":{"name":"Toxicology Mechanisms and Methods","volume":" ","pages":"1-14"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2024.2449423","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Endocrine-disrupting chemicals (EDCs) significantly contribute to health issues by interfering with hormonal functions. Bisphenol A (BPA), a prominent EDC, is extensively utilized as a monomer and plasticizer in producing polycarbonate plastic and epoxy resins, making it one of the highest-demanded chemicals in commercial use. This is the major component used in plastic products, including bottles, containers, storage items, and food serving ware. Exposure of BPA happens through oral, respiratory, transdermal routes and eye contact. As an EDC, BPA disrupts hormonal binding, leading to various health problems, such as cancers, reproductive abnormalities, metabolic syndrome, immune dysfunction, neurological effects, cardiovascular problems, respiratory issues, and obesity. BPA mimics the hormone estrogen but exhibits a weak affinity for estrogen receptors. This weak binding affinity triggers multiple cell death pathways, including necroptosis, pyroptosis, apoptosis, ferroptosis, and autophagy, across different cell types. Numerous clinical, in-vitro, and in-vivo experiments have demonstrated that BPA exposure results in unfavorable health effects. This review highlights the mechanisms of cell death pathways initiated through BPA exposure and the associated negative health consequences. The extensive use of BPA and its frequent detection in environmental and biological models underscore the urgent need for further investigation into its effects and the development of safe alternatives. Addressing the health risks posed by BPA involves a comprehensive approach that includes reducing exposure and finding novel substitutes to lessen its detrimental impact on humans.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双酚a的破坏性多细胞死亡途径。
内分泌干扰化学物质(EDCs)通过干扰激素功能而显著影响健康问题。双酚A (BPA)是一种重要的EDC,被广泛用作单体和增塑剂,用于生产聚碳酸酯塑料和环氧树脂,是商业用途中需求量最高的化学品之一。这是塑料制品的主要成分,包括瓶子、容器、储存物品和食品服务器具。双酚a通过口腔、呼吸、透皮和眼睛接触接触。作为一种EDC, BPA破坏激素结合,导致各种健康问题,如癌症、生殖异常、代谢综合征、免疫功能障碍、神经系统影响、心血管问题、呼吸问题和肥胖。BPA模仿雌激素,但对雌激素受体的亲和力较弱。这种弱结合亲和力触发多种细胞死亡途径,包括不同细胞类型的坏死、焦亡、凋亡、铁亡和自噬。大量的临床、体外和体内实验已经证明BPA暴露会对健康产生不利影响。这篇综述强调了通过BPA暴露引发的细胞死亡途径的机制和相关的负面健康后果。双酚a的广泛使用及其在环境和生物模型中的频繁检测强调了进一步调查其影响和开发安全替代品的迫切需要。解决双酚a带来的健康风险需要一种全面的方法,包括减少接触和寻找新的替代品,以减轻其对人类的有害影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
3.10%
发文量
66
审稿时长
6-12 weeks
期刊介绍: Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy. Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment.
期刊最新文献
Integrated transcriptomic and proteomic analyses reveal the effects of chronic benzene exposure on the central nervous system in mice. Evaluation and comparison of DNA alkylation and oxidative damage in e-cigarette and heated tobacco users. Chronic ethanol exposure induces cardiac fibroblast transdifferentiation via ceramide accumulation and oxidative stress. Insights into mitochondrial creatine kinase: examining preventive role of creatine supplement in doxorubicin-induced cardiotoxicity. Leveraging new approach methodologies: ecotoxicological modelling of endocrine disrupting chemicals to Danio rerio through machine learning and toxicity studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1