{"title":"Tension-induced organelle stress: an emerging target in fibrosis.","authors":"FuiBoon Kai, Andrew M Leidal, Valerie M Weaver","doi":"10.1016/j.tips.2024.12.006","DOIUrl":null,"url":null,"abstract":"<p><p>Fibrosis accounts for approximately one-third of disease-related deaths globally. Current therapies fail to cure fibrosis, emphasizing the need to identify new antifibrotic approaches. Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and resultant stiffening of tissue stroma. This stiffening appropriates actomyosin-mediated mechanical tension within cells to ultimately affect cell fate decisions and function. Recent studies demonstrate that subcellular organelles are physically connected to the actin cytoskeleton and sensitive to mechanoperturbations. These insights highlight mechanisms that may contribute to the chronic organelle stress in many fibrotic diseases, including those of the lung and liver. In this review, we discuss the hypothesis that a stiffened fibrotic ECM corrupts intracellular mechanical tension to compromise organelle homeostasis. We summarize potential therapeutics that could intervene in this mechanical dialog and that may have clinical benefit for resolving pathological organelle stress in fibrosis.</p>","PeriodicalId":23250,"journal":{"name":"Trends in pharmacological sciences","volume":" ","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tips.2024.12.006","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Fibrosis accounts for approximately one-third of disease-related deaths globally. Current therapies fail to cure fibrosis, emphasizing the need to identify new antifibrotic approaches. Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and resultant stiffening of tissue stroma. This stiffening appropriates actomyosin-mediated mechanical tension within cells to ultimately affect cell fate decisions and function. Recent studies demonstrate that subcellular organelles are physically connected to the actin cytoskeleton and sensitive to mechanoperturbations. These insights highlight mechanisms that may contribute to the chronic organelle stress in many fibrotic diseases, including those of the lung and liver. In this review, we discuss the hypothesis that a stiffened fibrotic ECM corrupts intracellular mechanical tension to compromise organelle homeostasis. We summarize potential therapeutics that could intervene in this mechanical dialog and that may have clinical benefit for resolving pathological organelle stress in fibrosis.
期刊介绍:
Trends in Pharmacological Sciences (TIPS) is a monthly peer-reviewed reviews journal that focuses on a wide range of topics in pharmacology, pharmacy, pharmaceutics, and toxicology. Launched in 1979, TIPS publishes concise articles discussing the latest advancements in pharmacology and therapeutics research.
The journal encourages submissions that align with its core themes while also being open to articles on the biopharma regulatory landscape, science policy and regulation, and bioethics.
Each issue of TIPS provides a platform for experts to share their insights and perspectives on the most exciting developments in the field. Through rigorous peer review, the journal ensures the quality and reliability of published articles.
Authors are invited to contribute articles that contribute to the understanding of pharmacology and its applications in various domains. Whether it's exploring innovative drug therapies or discussing the ethical considerations of pharmaceutical research, TIPS provides a valuable resource for researchers, practitioners, and policymakers in the pharmacological sciences.