{"title":"miR-224-5p Suppresses Non-Small Cell Lung Cancer via IL6ST-Mediated Regulation of the JAK2/STAT3 Pathway.","authors":"Jiao Tian, Yiming He, Zihui Zhang, Yuxin Zhu, Haixia Ren, Liang Zhang, Lei Li, Wei Li, Weidong Zhang, Ting Xiao, Honggang Zhou, Xiaoping Li","doi":"10.1111/1759-7714.15516","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Our study aimed to explore the specific functions and potential mechanisms of miR-224-5p in non-small cell lung cancer (NSCLC).</p><p><strong>Methods: </strong>We first analyzed the expression of miR-224-5p in NSCLC patients and cell lines through the GEO database and qRT-PCR analysis. Then, we used MTT assays, wound healing assays, Transwell assays, and western blotting to evaluate the effects of miR-224-5p on NSCLC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Furthermore, we used a xenograft tumor model to evaluate the effect of miR-224-5p on NSCLC tumor growth. Potential binding targets of miR-224-5p were further identified through the target prediction databases, and the relationships between miR-224-5p, its targets, and downstream signaling pathways were further verified using luciferase reporter gene assays and western blotting.</p><p><strong>Results: </strong>The GEO database and qRT-PCR analysis indicated that miR-224-5p was significantly downregulated in NSCLC patients and cell lines. Functional assays indicated that inhibiting miR-224-5p could enhance the proliferation, migration, invasion, and EMT of NSCLC cells, as well as accelerate tumor growth. In contrast, overexpression of miR-224-5p inhibited these processes. We identified IL6ST (interleukin 6 signal transducer) as a binding target of miR-224-5p. We observed that miR-224-5p could bind to and inhibit IL6ST expression and JAK2/STAT3 signaling pathway, and the inhibition of NSCLC tumor growth and JAK2/STAT3 pathway by miR-224-5p could be reversed by IL6ST overexpression.</p><p><strong>Conclusion: </strong>Our study demonstrated that miR-224-5p inhibited NSCLC by targeting IL6ST, thereby downregulating the JAK2/STAT3 signaling pathway.</p>","PeriodicalId":23338,"journal":{"name":"Thoracic Cancer","volume":"16 2","pages":"e15516"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751714/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thoracic Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/1759-7714.15516","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Our study aimed to explore the specific functions and potential mechanisms of miR-224-5p in non-small cell lung cancer (NSCLC).
Methods: We first analyzed the expression of miR-224-5p in NSCLC patients and cell lines through the GEO database and qRT-PCR analysis. Then, we used MTT assays, wound healing assays, Transwell assays, and western blotting to evaluate the effects of miR-224-5p on NSCLC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Furthermore, we used a xenograft tumor model to evaluate the effect of miR-224-5p on NSCLC tumor growth. Potential binding targets of miR-224-5p were further identified through the target prediction databases, and the relationships between miR-224-5p, its targets, and downstream signaling pathways were further verified using luciferase reporter gene assays and western blotting.
Results: The GEO database and qRT-PCR analysis indicated that miR-224-5p was significantly downregulated in NSCLC patients and cell lines. Functional assays indicated that inhibiting miR-224-5p could enhance the proliferation, migration, invasion, and EMT of NSCLC cells, as well as accelerate tumor growth. In contrast, overexpression of miR-224-5p inhibited these processes. We identified IL6ST (interleukin 6 signal transducer) as a binding target of miR-224-5p. We observed that miR-224-5p could bind to and inhibit IL6ST expression and JAK2/STAT3 signaling pathway, and the inhibition of NSCLC tumor growth and JAK2/STAT3 pathway by miR-224-5p could be reversed by IL6ST overexpression.
Conclusion: Our study demonstrated that miR-224-5p inhibited NSCLC by targeting IL6ST, thereby downregulating the JAK2/STAT3 signaling pathway.
期刊介绍:
Thoracic Cancer aims to facilitate international collaboration and exchange of comprehensive and cutting-edge information on basic, translational, and applied clinical research in lung cancer, esophageal cancer, mediastinal cancer, breast cancer and other thoracic malignancies. Prevention, treatment and research relevant to Asia-Pacific is a focus area, but submissions from all regions are welcomed. The editors encourage contributions relevant to prevention, general thoracic surgery, medical oncology, radiology, radiation medicine, pathology, basic cancer research, as well as epidemiological and translational studies in thoracic cancer. Thoracic Cancer is the official publication of the Chinese Society of Lung Cancer, International Chinese Society of Thoracic Surgery and is endorsed by the Korean Association for the Study of Lung Cancer and the Hong Kong Cancer Therapy Society.
The Journal publishes a range of article types including: Editorials, Invited Reviews, Mini Reviews, Original Articles, Clinical Guidelines, Technological Notes, Imaging in thoracic cancer, Meeting Reports, Case Reports, Letters to the Editor, Commentaries, and Brief Reports.