{"title":"Dolutegravir metabolism: impact of genetic variations on uridine diphosphate glucuronosyltransferase subfamilies.","authors":"Kouji Tagawa, Yoshihiro Maruo","doi":"10.1080/00498254.2025.2453983","DOIUrl":null,"url":null,"abstract":"<p><p>Dolutegravir (DTG) is a key drug used to treat human immunodeficiency virus type-1 (HIV-1) infections. Adverse events (AEs) of DTG treatment, including headache, anxiety, depression, insomnia, and abnormal dreams, are influenced by sex, body weight, age, and serum bilirubin levels. DTG is mainly metabolised by members of the uridine diphosphate glucuronosyltransferase 1A subfamilies (UGT1As), especially UGT1A1.Some studies suggest a relationship between <i>UGT1A1</i> variants and AEs. The aim of this study was to identify UGT1A isoforms that exhibit DTG glucuronidation activity and determine the relationship between <i>UGT1A</i> variants and DTG glucuronidation <i>in vitro</i>.UGT1A1, UGT1A3, UGT1A9, and UGT1A10 exhibited DTG glucuronidation activity, of which UGT1A1 was the most active. Furthermore, variants of these isoforms showed decreased DTG glucuronidation activity. The different variants of <i>UGT1A</i>s, such as UGT1A1.6, UGT1A1.7, UGT1A1.35, UGT1A1.63, UGT1A3.5, UGT1A9.2, UGT1A10M59I, and UGT1A10T202I, showed reduced glucuronidation activity towards DTG in comparison with the wild-type <i>UGT1A</i>s.This study elucidates the relationship between <i>UGT1A</i> variants and the levels of glucuronidation associated with each variant.Checking for <i>UGT1A</i>s may be helpful in predicting potential toxicities and adverse effects related to DTG treatment.</p>","PeriodicalId":23812,"journal":{"name":"Xenobiotica","volume":" ","pages":"1-8"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Xenobiotica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00498254.2025.2453983","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Dolutegravir (DTG) is a key drug used to treat human immunodeficiency virus type-1 (HIV-1) infections. Adverse events (AEs) of DTG treatment, including headache, anxiety, depression, insomnia, and abnormal dreams, are influenced by sex, body weight, age, and serum bilirubin levels. DTG is mainly metabolised by members of the uridine diphosphate glucuronosyltransferase 1A subfamilies (UGT1As), especially UGT1A1.Some studies suggest a relationship between UGT1A1 variants and AEs. The aim of this study was to identify UGT1A isoforms that exhibit DTG glucuronidation activity and determine the relationship between UGT1A variants and DTG glucuronidation in vitro.UGT1A1, UGT1A3, UGT1A9, and UGT1A10 exhibited DTG glucuronidation activity, of which UGT1A1 was the most active. Furthermore, variants of these isoforms showed decreased DTG glucuronidation activity. The different variants of UGT1As, such as UGT1A1.6, UGT1A1.7, UGT1A1.35, UGT1A1.63, UGT1A3.5, UGT1A9.2, UGT1A10M59I, and UGT1A10T202I, showed reduced glucuronidation activity towards DTG in comparison with the wild-type UGT1As.This study elucidates the relationship between UGT1A variants and the levels of glucuronidation associated with each variant.Checking for UGT1As may be helpful in predicting potential toxicities and adverse effects related to DTG treatment.
期刊介绍:
Xenobiotica covers seven main areas, including:General Xenobiochemistry, including in vitro studies concerned with the metabolism, disposition and excretion of drugs, and other xenobiotics, as well as the structure, function and regulation of associated enzymesClinical Pharmacokinetics and Metabolism, covering the pharmacokinetics and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in manAnimal Pharmacokinetics and Metabolism, covering the pharmacokinetics, and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in animalsPharmacogenetics, defined as the identification and functional characterisation of polymorphic genes that encode xenobiotic metabolising enzymes and transporters that may result in altered enzymatic, cellular and clinical responses to xenobioticsMolecular Toxicology, concerning the mechanisms of toxicity and the study of toxicology of xenobiotics at the molecular levelXenobiotic Transporters, concerned with all aspects of the carrier proteins involved in the movement of xenobiotics into and out of cells, and their impact on pharmacokinetic behaviour in animals and manTopics in Xenobiochemistry, in the form of reviews and commentaries are primarily intended to be a critical analysis of the issue, wherein the author offers opinions on the relevance of data or of a particular experimental approach or methodology