Detecting copy-number alterations from single-cell chromatin sequencing data by AtaCNA.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Cell Reports Methods Pub Date : 2025-01-27 Epub Date: 2025-01-14 DOI:10.1016/j.crmeth.2024.100939
Xiaochen Wang, Zijie Jin, Yang Shi, Ruibin Xi
{"title":"Detecting copy-number alterations from single-cell chromatin sequencing data by AtaCNA.","authors":"Xiaochen Wang, Zijie Jin, Yang Shi, Ruibin Xi","doi":"10.1016/j.crmeth.2024.100939","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell assay of transposase-accessible chromatin sequencing (scATAC-seq) unbiasedly profiles genome-wide chromatin accessibility in single cells. In single-cell tumor studies, identification of normal cells or tumor clonal structures often relies on copy-number alterations (CNAs). However, CNA detection from scATAC-seq is difficult due to the high noise, sparsity, and confounding factors. Here, we describe AtaCNA, a computational algorithm that accurately detects high-resolution CNAs from scATAC-seq data. We benchmark AtaCNA using simulation and real data and find AtaCNA's superior performance. Analyses of 10 scATAC-seq datasets show that AtaCNA could effectively distinguish malignant from non-malignant cells. In glioblastoma, endometrial, and ovarian cancer samples, AtaCNA identifies subclones at distinct cellular states, suggesting an important interplay between genetic and epigenetic plasticity. Some tumor subclones only differ in small-scale (10-20 Mb) CNAs, demonstrating the importance of high-resolution CNA detection. These data show that AtaCNA can aid in integrative analysis to understand the complex heterogeneity in cancer.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100939"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell assay of transposase-accessible chromatin sequencing (scATAC-seq) unbiasedly profiles genome-wide chromatin accessibility in single cells. In single-cell tumor studies, identification of normal cells or tumor clonal structures often relies on copy-number alterations (CNAs). However, CNA detection from scATAC-seq is difficult due to the high noise, sparsity, and confounding factors. Here, we describe AtaCNA, a computational algorithm that accurately detects high-resolution CNAs from scATAC-seq data. We benchmark AtaCNA using simulation and real data and find AtaCNA's superior performance. Analyses of 10 scATAC-seq datasets show that AtaCNA could effectively distinguish malignant from non-malignant cells. In glioblastoma, endometrial, and ovarian cancer samples, AtaCNA identifies subclones at distinct cellular states, suggesting an important interplay between genetic and epigenetic plasticity. Some tumor subclones only differ in small-scale (10-20 Mb) CNAs, demonstrating the importance of high-resolution CNA detection. These data show that AtaCNA can aid in integrative analysis to understand the complex heterogeneity in cancer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过AtaCNA检测单细胞染色质测序数据的拷贝数改变。
转座酶可及染色质测序的单细胞测定(scATAC-seq)无偏地描述了单细胞中全基因组染色质可及性。在单细胞肿瘤研究中,正常细胞或肿瘤克隆结构的鉴定通常依赖于拷贝数改变(CNAs)。然而,由于高噪声、稀疏性和混杂因素,从scATAC-seq中检测CNA是困难的。在这里,我们描述了AtaCNA,一种从scATAC-seq数据中准确检测高分辨率cna的计算算法。我们使用仿真和真实数据对AtaCNA进行了基准测试,发现AtaCNA具有优异的性能。对10个scATAC-seq数据集的分析表明,AtaCNA可以有效区分恶性和非恶性细胞。在胶质母细胞瘤、子宫内膜和卵巢癌样本中,AtaCNA识别出不同细胞状态的亚克隆,表明遗传和表观遗传可塑性之间存在重要的相互作用。一些肿瘤亚克隆仅在小尺度(10-20 Mb) CNA上存在差异,这表明高分辨率CNA检测的重要性。这些数据表明,AtaCNA可以帮助进行综合分析,以了解癌症的复杂异质性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
期刊最新文献
Non-invasive real-time pulsed Doppler assessment of blood flow in mouse ophthalmic artery. A probabilistic modeling framework for genomic networks incorporating sample heterogeneity. Exploring common mechanisms of adverse drug reactions and disease phenotypes through network-based analysis. Mathematically mapping the network of cells in the tumor microenvironment. Refined culture conditions with increased physiological relevance uncover oncogene-dependent metabolic signatures in Ewing sarcoma spheroids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1