Detailed Structural Elucidation of Antibody-Drug Conjugate Biotransformation Species Using High Resolution Multiple Reaction Monitoring Mass Spectrometry with Orthogonal Dissociation Methods.

IF 4.9 Q1 CHEMISTRY, MEDICINAL ACS Pharmacology and Translational Science Pub Date : 2024-12-17 eCollection Date: 2025-01-10 DOI:10.1021/acsptsci.4c00445
Junyan Yang, Hui Yin Tan, Jiaqi Yuan, Yue Huang, Anton I Rosenbaum
{"title":"Detailed Structural Elucidation of Antibody-Drug Conjugate Biotransformation Species Using High Resolution Multiple Reaction Monitoring Mass Spectrometry with Orthogonal Dissociation Methods.","authors":"Junyan Yang, Hui Yin Tan, Jiaqi Yuan, Yue Huang, Anton I Rosenbaum","doi":"10.1021/acsptsci.4c00445","DOIUrl":null,"url":null,"abstract":"<p><p>Antibody-drug conjugates (ADCs) are a promising drug modality substantially expanding in both the discovery space and clinical development. Assessing the biotransformation of ADCs <i>in vitro</i> and <i>in vivo</i> is important in understanding their stability and pharmacokinetic properties. We previously reported biotransformation pathways for the anti-B7H4 topoisomerase I inhibitor ADC, AZD8205, puxitatug samrotecan, that underpin its structural stability <i>in vivo</i> using an intact protein liquid chromatography-high resolution mass spectrometry (LC-HRMS) approach. Herein, we employed a LC-high resolution multiple reaction monitoring (LC-MRM<sup>HR</sup>) approach using both collision-induced dissociation (CID) and electron-activated dissociation (EAD) methods, confirming our earlier findings. Furthermore, we were able to obtain additional detailed structural information on the biotransformation products expanding on earlier intact analyses. We also highlight the high sensitivity of LC-MRM<sup>HR</sup> for successfully identifying minor biotransformation products at low concentrations that were not detectable using the intact protein LC-HRMS workflow. Especially, EAD aided in the confirmation of biotransformation species that contain newly formed disulfide bonds due to the preferential dissociation of disulfide bonds using this method. We observed biotransformation reactions that vary between linker-payload (PL) conjugation sites on the antibody. For example, the trend toward constitutional isomerism in thio-succinimide linker hydrolysis, and the resulting positional isomers from thiol adduct formation following linker-PL deconjugation. The reported orthogonal analytical approaches highly complement and fortify the intact protein LC-HRMS data. This study sheds further light on detailed structural characterization of various ADC species and validates the proposed biotransformation pathways explaining the stability of AZD8205 <i>in vivo</i>.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"8 1","pages":"113-123"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729422/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsptsci.4c00445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/10 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Antibody-drug conjugates (ADCs) are a promising drug modality substantially expanding in both the discovery space and clinical development. Assessing the biotransformation of ADCs in vitro and in vivo is important in understanding their stability and pharmacokinetic properties. We previously reported biotransformation pathways for the anti-B7H4 topoisomerase I inhibitor ADC, AZD8205, puxitatug samrotecan, that underpin its structural stability in vivo using an intact protein liquid chromatography-high resolution mass spectrometry (LC-HRMS) approach. Herein, we employed a LC-high resolution multiple reaction monitoring (LC-MRMHR) approach using both collision-induced dissociation (CID) and electron-activated dissociation (EAD) methods, confirming our earlier findings. Furthermore, we were able to obtain additional detailed structural information on the biotransformation products expanding on earlier intact analyses. We also highlight the high sensitivity of LC-MRMHR for successfully identifying minor biotransformation products at low concentrations that were not detectable using the intact protein LC-HRMS workflow. Especially, EAD aided in the confirmation of biotransformation species that contain newly formed disulfide bonds due to the preferential dissociation of disulfide bonds using this method. We observed biotransformation reactions that vary between linker-payload (PL) conjugation sites on the antibody. For example, the trend toward constitutional isomerism in thio-succinimide linker hydrolysis, and the resulting positional isomers from thiol adduct formation following linker-PL deconjugation. The reported orthogonal analytical approaches highly complement and fortify the intact protein LC-HRMS data. This study sheds further light on detailed structural characterization of various ADC species and validates the proposed biotransformation pathways explaining the stability of AZD8205 in vivo.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用正交解离法的高分辨率多反应监测质谱技术详细阐明抗体-药物偶联生物转化物质的结构。
抗体-药物偶联物(adc)是一种很有前途的药物形式,在发现空间和临床开发方面都有很大的发展。评估adc在体外和体内的生物转化对了解其稳定性和药代动力学特性非常重要。我们之前报道了抗b7h4拓扑异构酶I抑制剂ADC, AZD8205,普西他图samrotecan的生物转化途径,利用完整蛋白液相色谱-高分辨率质谱(LC-HRMS)方法支持其体内结构稳定性。在此,我们采用了lc -高分辨率多反应监测(LC-MRMHR)方法,使用碰撞诱导解离(CID)和电子激活解离(EAD)方法,证实了我们早期的发现。此外,我们能够在早期完整分析的基础上获得关于生物转化产品的额外详细结构信息。我们还强调了LC-MRMHR在低浓度下成功识别少量生物转化产物的高灵敏度,这些产物是使用完整蛋白质LC-HRMS工作流程无法检测到的。特别是,EAD帮助确认了生物转化物种,这些物种含有新形成的二硫键,这是由于这种方法优先解离了二硫键。我们观察到生物转化反应在抗体上的连接物-有效载荷(PL)偶联位点之间变化。例如,硫代琥珀酰亚胺连接物水解过程中结构异构的趋势,以及连接物- pl解偶联后巯基加合物形成的位置异构体。所报道的正交分析方法高度补充和加强了完整蛋白LC-HRMS数据。该研究进一步揭示了各种ADC物种的详细结构特征,并验证了AZD8205在体内稳定性的生物转化途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Pharmacology and Translational Science
ACS Pharmacology and Translational Science Medicine-Pharmacology (medical)
CiteScore
10.00
自引率
3.30%
发文量
133
期刊介绍: ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered. ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition. Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.
期刊最新文献
Molecular and Immunological Properties of a Chimeric Glycosyl Hydrolase 18 Based on Immunoinformatics Approaches: A Design of a New Anti-Leishmania Vaccine. Recommended Opioid Receptor Tool Compounds: Comparative In Vitro for Receptor Selectivity Profiles and In Vivo for Pharmacological Antinociceptive Profiles. Sigma 1 Receptor and Its Pivotal Role in Neurological Disorders. A 3D Model of the Human Lung Airway for Evaluating Permeability of Inhaled Drugs. Safe and Orally Bioavailable Inhibitor of Serine Palmitoyltransferase Improves Age-Related Sarcopenia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1