{"title":"Human epicardial organoids from pluripotent stem cells resemble fetal stage with potential cardiomyocyte- transdifferentiation.","authors":"Fanwen Wang, Xinle Zou, Huilin Zheng, Tianci Kong, Duanqing Pei","doi":"10.1186/s13578-024-01339-w","DOIUrl":null,"url":null,"abstract":"<p><p>Epicardium, the most outer mesothelium, exerts crucial functions in fetal heart development and adult heart regeneration. Here we use a three-step manipulation of WNT signalling entwined with BMP and RA signalling for generating a self-organized epicardial organoid that highly express with epicardium makers WT1 and TCF21 from human embryonic stem cells. After 8-days treatment of TGF-beta following by bFGF, cells enter into epithelium-mesenchymal transition and give rise to smooth muscle cells. Epicardium could also integrate and invade into mouse heart with SNAI1 expression, and give birth to numerous cardiomyocyte-like cells. Single-cell RNA seq unveils the heterogeneity and multipotency exhibited by epicardium-derived-cells and fetal-like epicardium. Meanwhile, extracellular matrix and growth factors secreted by epicardial organoid mimics the ecology of subepicardial space between the epicardium and cardiomyocytes. As such, this epicardial organoid offers a unique ground for investigating and exploring the potential of epicardium in heart development and regeneration.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"15 1","pages":"4"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740338/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Bioscience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13578-024-01339-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Epicardium, the most outer mesothelium, exerts crucial functions in fetal heart development and adult heart regeneration. Here we use a three-step manipulation of WNT signalling entwined with BMP and RA signalling for generating a self-organized epicardial organoid that highly express with epicardium makers WT1 and TCF21 from human embryonic stem cells. After 8-days treatment of TGF-beta following by bFGF, cells enter into epithelium-mesenchymal transition and give rise to smooth muscle cells. Epicardium could also integrate and invade into mouse heart with SNAI1 expression, and give birth to numerous cardiomyocyte-like cells. Single-cell RNA seq unveils the heterogeneity and multipotency exhibited by epicardium-derived-cells and fetal-like epicardium. Meanwhile, extracellular matrix and growth factors secreted by epicardial organoid mimics the ecology of subepicardial space between the epicardium and cardiomyocytes. As such, this epicardial organoid offers a unique ground for investigating and exploring the potential of epicardium in heart development and regeneration.
期刊介绍:
Cell and Bioscience, the official journal of the Society of Chinese Bioscientists in America, is an open access, peer-reviewed journal that encompasses all areas of life science research.