Chloramphenicol and gentamicin reduce the evolution of resistance to phage ΦX174 by suppressing a subset of E. coli LPS mutants.

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences PLoS Biology Pub Date : 2025-01-21 eCollection Date: 2025-01-01 DOI:10.1371/journal.pbio.3002952
Lavisha Parab, Jordan Romeyer Dherbey, Norma Rivera, Michael Schwarz, Jenna Gallie, Frederic Bertels
{"title":"Chloramphenicol and gentamicin reduce the evolution of resistance to phage ΦX174 by suppressing a subset of E. coli LPS mutants.","authors":"Lavisha Parab, Jordan Romeyer Dherbey, Norma Rivera, Michael Schwarz, Jenna Gallie, Frederic Bertels","doi":"10.1371/journal.pbio.3002952","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteriophages infect gram-negative bacteria by attaching to molecules present on the bacterial surface, often lipopolysaccharides (LPS). Modification of LPS can lead to resistance to phage infection. In addition, LPS modifications can impact antibiotic susceptibility, allowing for phage-antibiotic synergism. The evolutionary mechanism(s) behind such synergistic interactions remain largely unclear. Here, we show that the presence of antibiotics can affect the evolution of resistance to phage infection, using phage ΦX174 and Escherichia coli C. We use a collection of 34 E. coli C LPS strains, each of which is resistant to ΦX174, and has either a \"rough\" or \"deep rough\" LPS phenotype. Growth of the bacterial strains with the deep rough phenotype is inhibited at low concentrations of chloramphenicol and, to a much lesser degree, gentamicin. Treating E. coli C wild type with ΦX174 and chloramphenicol eliminates the emergence of mutants with the deep rough phenotype, and thereby slows the evolution of resistance to phage infection. At slightly lower chloramphenicol concentrations, phage resistance rates are similar to those observed at high concentrations; yet, we show that the diversity of possible mutants is much larger than at higher chloramphenicol concentrations. These data suggest that specific antibiotic concentrations can lead to synergistic phage-antibiotic interactions that disappear at higher antibiotic concentrations. Overall, we show that the change in survival of various ΦX174-resistant E. coli C mutants in the presence of antibiotics can explain the observed phage-antibiotic synergism.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3002952"},"PeriodicalIF":9.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002952","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Bacteriophages infect gram-negative bacteria by attaching to molecules present on the bacterial surface, often lipopolysaccharides (LPS). Modification of LPS can lead to resistance to phage infection. In addition, LPS modifications can impact antibiotic susceptibility, allowing for phage-antibiotic synergism. The evolutionary mechanism(s) behind such synergistic interactions remain largely unclear. Here, we show that the presence of antibiotics can affect the evolution of resistance to phage infection, using phage ΦX174 and Escherichia coli C. We use a collection of 34 E. coli C LPS strains, each of which is resistant to ΦX174, and has either a "rough" or "deep rough" LPS phenotype. Growth of the bacterial strains with the deep rough phenotype is inhibited at low concentrations of chloramphenicol and, to a much lesser degree, gentamicin. Treating E. coli C wild type with ΦX174 and chloramphenicol eliminates the emergence of mutants with the deep rough phenotype, and thereby slows the evolution of resistance to phage infection. At slightly lower chloramphenicol concentrations, phage resistance rates are similar to those observed at high concentrations; yet, we show that the diversity of possible mutants is much larger than at higher chloramphenicol concentrations. These data suggest that specific antibiotic concentrations can lead to synergistic phage-antibiotic interactions that disappear at higher antibiotic concentrations. Overall, we show that the change in survival of various ΦX174-resistant E. coli C mutants in the presence of antibiotics can explain the observed phage-antibiotic synergism.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氯霉素和庆大霉素通过抑制大肠杆菌LPS突变体的一个子集来减少对噬菌体ΦX174的抗性进化。
噬菌体通过附着在细菌表面的分子(通常是脂多糖)上感染革兰氏阴性细菌。LPS的修饰可以导致对噬菌体感染的抗性。此外,LPS修饰可以影响抗生素敏感性,允许噬菌体-抗生素协同作用。这种协同作用背后的进化机制在很大程度上仍不清楚。在这里,我们表明抗生素的存在可以影响噬菌体感染的抗性进化,使用噬菌体ΦX174和大肠杆菌C.我们使用了34个大肠杆菌C LPS菌株,每个菌株都对ΦX174具有抗性,并且具有“粗糙”或“深粗糙”LPS表型。具有深粗糙表型的细菌菌株的生长在低浓度的氯霉素和庆大霉素的抑制程度要小得多。用ΦX174和氯霉素处理野生型大肠杆菌C可以消除具有深粗糙表型的突变体的出现,从而减缓对噬菌体感染的抗性进化。在氯霉素浓度稍低时,噬菌体耐药率与高浓度时相似;然而,我们表明可能的突变体的多样性比较高的氯霉素浓度要大得多。这些数据表明,特定的抗生素浓度可导致增效噬菌体-抗生素相互作用,而这种相互作用在较高的抗生素浓度下消失。总的来说,我们表明,各种ΦX174-resistant大肠杆菌C突变体在抗生素存在下的生存变化可以解释观察到的噬菌体-抗生素协同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
期刊最新文献
Chloramphenicol and gentamicin reduce the evolution of resistance to phage ΦX174 by suppressing a subset of E. coli LPS mutants. Emergence of SARS-CoV-2 subgenomic RNAs that enhance viral fitness and immune evasion. Language-specific neural dynamics extend syntax into the time domain. Persistently increased post-stress activity of paraventricular thalamic neurons is essential for the emergence of stress-induced alterations in behaviour. Viral and immune dynamics of genital human papillomavirus infections in young women with high temporal resolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1