Multi-tissue characterization of the constitutive heterochromatin proteome in Drosophila identifies a link between satellite DNA organization and transposon repression.

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences PLoS Biology Pub Date : 2025-01-15 eCollection Date: 2025-01-01 DOI:10.1371/journal.pbio.3002984
Ankita Chavan, Lena Skrutl, Federico Uliana, Melanie Pfister, Franziska Brändle, Laszlo Tirian, Delora Baptista, Dominik Handler, David Burke, Anna Sintsova, Pedro Beltrao, Julius Brennecke, Madhav Jagannathan
{"title":"Multi-tissue characterization of the constitutive heterochromatin proteome in Drosophila identifies a link between satellite DNA organization and transposon repression.","authors":"Ankita Chavan, Lena Skrutl, Federico Uliana, Melanie Pfister, Franziska Brändle, Laszlo Tirian, Delora Baptista, Dominik Handler, David Burke, Anna Sintsova, Pedro Beltrao, Julius Brennecke, Madhav Jagannathan","doi":"10.1371/journal.pbio.3002984","DOIUrl":null,"url":null,"abstract":"<p><p>Noncoding satellite DNA repeats are abundant at the pericentromeric heterochromatin of eukaryotic chromosomes. During interphase, sequence-specific DNA-binding proteins cluster these repeats from multiple chromosomes into nuclear foci known as chromocenters. Despite the pivotal role of chromocenters in cellular processes like genome encapsulation and gene repression, the associated proteins remain incompletely characterized. Here, we use 2 satellite DNA-binding proteins, D1 and Prod, as baits to characterize the chromocenter-associated proteome in Drosophila embryos, ovaries, and testes through quantitative mass spectrometry. We identify D1- and Prod-associated proteins, including known heterochromatin proteins as well as proteins previously unlinked to satellite DNA or chromocenters, thereby laying the foundation for a comprehensive understanding of cellular functions enabled by satellite DNA repeats and their associated proteins. Interestingly, we find that multiple components of the transposon-silencing piRNA pathway are associated with D1 and Prod in embryos. Using genetics, transcriptomics, and small RNA profiling, we show that flies lacking D1 during embryogenesis exhibit transposon expression and gonadal atrophy as adults. We further demonstrate that this gonadal atrophy can be rescued by mutating the checkpoint kinase, Chk2, which mediates germ cell arrest in response to transposon mobilization. Thus, we reveal that a satellite DNA-binding protein functions during embryogenesis to silence transposons, in a manner that is heritable across later stages of development.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3002984"},"PeriodicalIF":9.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734925/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002984","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Noncoding satellite DNA repeats are abundant at the pericentromeric heterochromatin of eukaryotic chromosomes. During interphase, sequence-specific DNA-binding proteins cluster these repeats from multiple chromosomes into nuclear foci known as chromocenters. Despite the pivotal role of chromocenters in cellular processes like genome encapsulation and gene repression, the associated proteins remain incompletely characterized. Here, we use 2 satellite DNA-binding proteins, D1 and Prod, as baits to characterize the chromocenter-associated proteome in Drosophila embryos, ovaries, and testes through quantitative mass spectrometry. We identify D1- and Prod-associated proteins, including known heterochromatin proteins as well as proteins previously unlinked to satellite DNA or chromocenters, thereby laying the foundation for a comprehensive understanding of cellular functions enabled by satellite DNA repeats and their associated proteins. Interestingly, we find that multiple components of the transposon-silencing piRNA pathway are associated with D1 and Prod in embryos. Using genetics, transcriptomics, and small RNA profiling, we show that flies lacking D1 during embryogenesis exhibit transposon expression and gonadal atrophy as adults. We further demonstrate that this gonadal atrophy can be rescued by mutating the checkpoint kinase, Chk2, which mediates germ cell arrest in response to transposon mobilization. Thus, we reveal that a satellite DNA-binding protein functions during embryogenesis to silence transposons, in a manner that is heritable across later stages of development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
果蝇组成异染色质蛋白质组的多组织特征鉴定了卫星DNA组织和转座子抑制之间的联系。
非编码卫星DNA重复序列在真核生物染色体的近中心异染色质上大量存在。在间期,序列特异性的dna结合蛋白将来自多个染色体的重复序列聚集到称为染色体中心的核灶中。尽管色中心在基因组包封和基因抑制等细胞过程中起着关键作用,但相关蛋白仍未完全表征。在这里,我们使用2个卫星dna结合蛋白D1和Prod作为诱饵,通过定量质谱法表征了果蝇胚胎、卵巢和睾丸的色中心相关蛋白质组。我们鉴定了D1和prod相关蛋白,包括已知的异染色质蛋白以及以前未与卫星DNA或色中心连接的蛋白质,从而为全面了解卫星DNA重复序列及其相关蛋白所激活的细胞功能奠定了基础。有趣的是,我们发现转座子沉默piRNA通路的多个组分与胚胎中的D1和Prod相关。通过遗传学、转录组学和小RNA分析,我们发现在胚胎发生过程中缺乏D1的果蝇在成年后表现出转座子表达和性腺萎缩。我们进一步证明,这种性腺萎缩可以通过突变检查点激酶Chk2来挽救,Chk2在转座子动员的反应中介导生殖细胞阻滞。因此,我们揭示了卫星dna结合蛋白在胚胎发生过程中以一种在发育后期可遗传的方式沉默转座子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
期刊最新文献
Chloramphenicol and gentamicin reduce the evolution of resistance to phage ΦX174 by suppressing a subset of E. coli LPS mutants. Emergence of SARS-CoV-2 subgenomic RNAs that enhance viral fitness and immune evasion. Language-specific neural dynamics extend syntax into the time domain. Persistently increased post-stress activity of paraventricular thalamic neurons is essential for the emergence of stress-induced alterations in behaviour. Viral and immune dynamics of genital human papillomavirus infections in young women with high temporal resolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1