Spontaneous slow cortical potentials and brain oscillations independently influence conscious visual perception.

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences PLoS Biology Pub Date : 2025-01-16 eCollection Date: 2025-01-01 DOI:10.1371/journal.pbio.3002964
Lua Koenig, Biyu J He
{"title":"Spontaneous slow cortical potentials and brain oscillations independently influence conscious visual perception.","authors":"Lua Koenig, Biyu J He","doi":"10.1371/journal.pbio.3002964","DOIUrl":null,"url":null,"abstract":"<p><p>Perceptual awareness results from an intricate interaction between external sensory input and the brain's spontaneous activity. Pre-stimulus ongoing activity influencing conscious perception includes both brain oscillations in the alpha (7 to 14 Hz) and beta (14 to 30 Hz) frequency ranges and aperiodic activity in the slow cortical potential (SCP, <5 Hz) range. However, whether brain oscillations and SCPs independently influence conscious perception or do so through shared mechanisms remains unknown. Here, we addressed this question in 2 independent magnetoencephalography (MEG) data sets involving near-threshold visual perception tasks in humans using low-level (Gabor patches) and high-level (objects, faces, houses, animals) stimuli, respectively. We found that oscillatory power and large-scale SCP activity influence conscious perception through independent mechanisms that do not have shared variance. In addition, through mediation analysis, we show that pre-stimulus oscillatory power and SCP activity have different relations to pupil size-an index of arousal-in their influences on conscious perception. Together, these findings suggest that oscillatory power and SCPs independently contribute to perceptual awareness, with distinct relations to pupil-linked arousal.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3002964"},"PeriodicalIF":9.8000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737857/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002964","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Perceptual awareness results from an intricate interaction between external sensory input and the brain's spontaneous activity. Pre-stimulus ongoing activity influencing conscious perception includes both brain oscillations in the alpha (7 to 14 Hz) and beta (14 to 30 Hz) frequency ranges and aperiodic activity in the slow cortical potential (SCP, <5 Hz) range. However, whether brain oscillations and SCPs independently influence conscious perception or do so through shared mechanisms remains unknown. Here, we addressed this question in 2 independent magnetoencephalography (MEG) data sets involving near-threshold visual perception tasks in humans using low-level (Gabor patches) and high-level (objects, faces, houses, animals) stimuli, respectively. We found that oscillatory power and large-scale SCP activity influence conscious perception through independent mechanisms that do not have shared variance. In addition, through mediation analysis, we show that pre-stimulus oscillatory power and SCP activity have different relations to pupil size-an index of arousal-in their influences on conscious perception. Together, these findings suggest that oscillatory power and SCPs independently contribute to perceptual awareness, with distinct relations to pupil-linked arousal.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自发的皮层慢电位和脑振荡独立影响有意识的视觉知觉。
知觉是外部感觉输入和大脑自发活动之间复杂的相互作用的结果。影响意识知觉的前刺激持续活动包括α(7至14赫兹)和β(14至30赫兹)频率范围内的大脑振荡和慢皮层电位(SCP,
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
期刊最新文献
The texture-taste connection: Multimodal sensory neurons in fly larvae. Oxygen-binding proteins aid oxygen diffusion to enhance fitness of a yeast model of multicellularity. Pilin antigenic variants impact gonococcal lifestyle and antibiotic tolerance by modulating interbacterial forces. Food hardness preference reveals multisensory contributions of fly larval gustatory organs in behaviour and physiology. Insect size responses to climate change vary across elevations according to seasonal timing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1