{"title":"Insulin Delivery Pumps for Human Spaceflight: Steps Toward an Accessible Space Future.","authors":"Kyle J Horn, Jeffrey A Hoffman","doi":"10.1177/10806032241304439","DOIUrl":null,"url":null,"abstract":"<p><p>Commercially available insulin pumps for treatment of diabetes mellitus are currently not qualified to operate in the space environment. This work rigorously tested the fluid delivery performance of a Tandem t:slim X2 insulin pump in both micro- and hypergravity during a parabolic microgravity research flight. The parabolic research flight environment serves as an analogue to the types of transient gravitational loadings experienced during human-led missions, which provides a foundation to expand testing to suborbital and orbital flights in addition to other extreme environmental tests for wilderness dependency. The results of the flight data showed no significant difference between fluid delivery performance at 0, 1, and 2g acceleration regimes, nor at the transitions between gravity environments. Recommendations are made for further experimentation and qualification tests before use in future spaceflight missions.</p>","PeriodicalId":49360,"journal":{"name":"Wilderness & Environmental Medicine","volume":" ","pages":"10806032241304439"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wilderness & Environmental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10806032241304439","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Commercially available insulin pumps for treatment of diabetes mellitus are currently not qualified to operate in the space environment. This work rigorously tested the fluid delivery performance of a Tandem t:slim X2 insulin pump in both micro- and hypergravity during a parabolic microgravity research flight. The parabolic research flight environment serves as an analogue to the types of transient gravitational loadings experienced during human-led missions, which provides a foundation to expand testing to suborbital and orbital flights in addition to other extreme environmental tests for wilderness dependency. The results of the flight data showed no significant difference between fluid delivery performance at 0, 1, and 2g acceleration regimes, nor at the transitions between gravity environments. Recommendations are made for further experimentation and qualification tests before use in future spaceflight missions.
期刊介绍:
Wilderness & Environmental Medicine, the official journal of the Wilderness Medical Society, is the leading journal for physicians practicing medicine in austere environments. This quarterly journal features articles on all aspects of wilderness medicine, including high altitude and climbing, cold- and heat-related phenomena, natural environmental disasters, immersion and near-drowning, diving, and barotrauma, hazardous plants/animals/insects/marine animals, animal attacks, search and rescue, ethical and legal issues, aeromedial transport, survival physiology, medicine in remote environments, travel medicine, operational medicine, and wilderness trauma management. It presents original research and clinical reports from scientists and practitioners around the globe. WEM invites submissions from authors who want to take advantage of our established publication''s unique scope, wide readership, and international recognition in the field of wilderness medicine. Its readership is a diverse group of medical and outdoor professionals who choose WEM as their primary wilderness medical resource.