From human to superhuman: the impact of the microbiome on physiology

IF 4.7 2区 医学 Q1 NEUROSCIENCES Journal of Physiology-London Pub Date : 2025-01-22 DOI:10.1113/JP287883
Stephen J. Keely, Paul D. Cotter, Annika Wahlstrom, Harriët Schellekens, David Weinkove, Kim E. Barrett
{"title":"From human to superhuman: the impact of the microbiome on physiology","authors":"Stephen J. Keely,&nbsp;Paul D. Cotter,&nbsp;Annika Wahlstrom,&nbsp;Harriët Schellekens,&nbsp;David Weinkove,&nbsp;Kim E. Barrett","doi":"10.1113/JP287883","DOIUrl":null,"url":null,"abstract":"<p>The complex microbial community residing in the human gut has long been understood to regulate gastrointestinal physiology and to participate in digestive diseases, but its extraintestinal actions and influences are increasingly recognized. This article discusses bidirectional interactions between the gut microbiome and athletic performance, metabolism, longevity and the ability of the gut–brain axis to influence cognitive function and mental health.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":50088,"journal":{"name":"Journal of Physiology-London","volume":"603 4","pages":"797-807"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1113/JP287883","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-London","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1113/JP287883","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The complex microbial community residing in the human gut has long been understood to regulate gastrointestinal physiology and to participate in digestive diseases, but its extraintestinal actions and influences are increasingly recognized. This article discusses bidirectional interactions between the gut microbiome and athletic performance, metabolism, longevity and the ability of the gut–brain axis to influence cognitive function and mental health.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从人类到超人:微生物组对生理的影响。
长期以来,人们一直认为居住在人体肠道中的复杂微生物群落调节胃肠道生理并参与消化系统疾病,但其肠外作用和影响越来越被认识到。本文讨论了肠道微生物群与运动表现、代谢、寿命以及肠-脑轴影响认知功能和心理健康的能力之间的双向相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physiology-London
Journal of Physiology-London 医学-神经科学
CiteScore
9.70
自引率
7.30%
发文量
817
审稿时长
2 months
期刊介绍: The Journal of Physiology publishes full-length original Research Papers and Techniques for Physiology, which are short papers aimed at disseminating new techniques for physiological research. Articles solicited by the Editorial Board include Perspectives, Symposium Reports and Topical Reviews, which highlight areas of special physiological interest. CrossTalk articles are short editorial-style invited articles framing a debate between experts in the field on controversial topics. Letters to the Editor and Journal Club articles are also published. All categories of papers are subjected to peer reivew. The Journal of Physiology welcomes submitted research papers in all areas of physiology. Authors should present original work that illustrates new physiological principles or mechanisms. Papers on work at the molecular level, at the level of the cell membrane, single cells, tissues or organs and on systems physiology are all acceptable. Theoretical papers and papers that use computational models to further our understanding of physiological processes will be considered if based on experimentally derived data and if the hypothesis advanced is directly amenable to experimental testing. While emphasis is on human and mammalian physiology, work on lower vertebrate or invertebrate preparations may be suitable if it furthers the understanding of the functioning of other organisms including mammals.
期刊最新文献
Issue Information Methodological evaluation of muscle oxidative stress in normotensive and hypertensive individuals: Ageing-related. Biophysical modelling of intrinsic cardiac nervous system neuronal electrophysiology based on single-cell transcriptomics. Calciprotein particle-induced calcium overload triggers mitochondrial dysfunction in endothelial cells. Impact of the metabolic disease status in obesity and surgical weight loss on human adipose tissue bioenergetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1