Commentary: Why do many cell biology papers contain fundamental bioenergetic errors?

IF 3.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et Biophysica Acta-Bioenergetics Pub Date : 2025-01-17 DOI:10.1016/j.bbabio.2025.149541
David G Nicholls
{"title":"Commentary: Why do many cell biology papers contain fundamental bioenergetic errors?","authors":"David G Nicholls","doi":"10.1016/j.bbabio.2025.149541","DOIUrl":null,"url":null,"abstract":"<p><p>To professional bioenergeticists, the thermodynamic and kinetic constraints on mitochondrial function are self-evident. It is therefore profoundly concerning that high-profile cell biology papers continue to appear containing fundamental bioenergetic errors that appear to have evaded the scrutiny of the principal investigator, co-authors, editors and, apparently, at least some of the referees. The problem is not new, and seems to stem from a perception that bioenergetics is a 'difficult' subject, both at undergraduate level, if it is taught in any depth, and in research, where cell biologists are faced with biophysical concepts such as protonmotive force, ion flux, redox potential and Gibbs free energy.</p>","PeriodicalId":50731,"journal":{"name":"Biochimica et Biophysica Acta-Bioenergetics","volume":"1866 2","pages":"149541"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Bioenergetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbabio.2025.149541","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To professional bioenergeticists, the thermodynamic and kinetic constraints on mitochondrial function are self-evident. It is therefore profoundly concerning that high-profile cell biology papers continue to appear containing fundamental bioenergetic errors that appear to have evaded the scrutiny of the principal investigator, co-authors, editors and, apparently, at least some of the referees. The problem is not new, and seems to stem from a perception that bioenergetics is a 'difficult' subject, both at undergraduate level, if it is taught in any depth, and in research, where cell biologists are faced with biophysical concepts such as protonmotive force, ion flux, redox potential and Gibbs free energy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评论:为什么许多细胞生物学论文包含基本的生物能错误?
对于专业的生物能量学家来说,线粒体功能的热力学和动力学约束是不言而喻的。因此,令人深感担忧的是,高调的细胞生物学论文继续出现,其中包含基本的生物能量错误,这些错误似乎逃避了首席研究员、共同作者、编辑,显然,至少是一些裁判的审查。这个问题并不新鲜,而且似乎源于这样一种观念,即生物能量学是一门“困难”的学科,无论是在本科阶段,如果深入教授的话,还是在研究中,细胞生物学家都面临着诸如质子动力、离子通量、氧化还原势和吉布斯自由能等生物物理概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochimica et Biophysica Acta-Bioenergetics
Biochimica et Biophysica Acta-Bioenergetics 生物-生化与分子生物学
CiteScore
9.50
自引率
7.00%
发文量
363
审稿时长
92 days
期刊介绍: BBA Bioenergetics covers the area of biological membranes involved in energy transfer and conversion. In particular, it focuses on the structures obtained by X-ray crystallography and other approaches, and molecular mechanisms of the components of photosynthesis, mitochondrial and bacterial respiration, oxidative phosphorylation, motility and transport. It spans applications of structural biology, molecular modeling, spectroscopy and biophysics in these systems, through bioenergetic aspects of mitochondrial biology including biomedicine aspects of energy metabolism in mitochondrial disorders, neurodegenerative diseases like Parkinson''s and Alzheimer''s, aging, diabetes and even cancer.
期刊最新文献
Clinical ischemia-reperfusion injury: Driven by reductive rather than oxidative stress? A narrative review. Commentary: Why do many cell biology papers contain fundamental bioenergetic errors? Purification and characterization of recombinant human mitochondrial proton-pumping nicotinamide nucleotide transhydrogenase. Mutational interference with oligomerization properties of OCP-related apo- and holoproteins studied by analytical ultracentrifugation. ADP-inhibited structure of non-catalytic site-depleted FoF1-ATPase from thermophilic Bacillus sp. PS-3.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1