{"title":"Genome folding by cohesion.","authors":"Shutao Qi, Zhubing Shi, Hongtao Yu","doi":"10.1016/j.gde.2025.102310","DOIUrl":null,"url":null,"abstract":"<p><p>Chromosomes in eukaryotic cells undergo compaction at multiple levels and are folded into hierarchical structures to fit into the nucleus with limited dimensions. Three-dimensional genome organization needs to be coordinated with chromosome-templated processes, including DNA replication and gene transcription. As an ATPase molecular machine, the cohesin complex is a major driver of genome folding, which regulates transcription by modulating promoter-enhancer contacts. Here, we review our current understanding of genome folding by cohesin. We summarize the available evidence supporting a role of loop extrusion by cohesin in forming chromatin loops and topologically associating domains. We describe different conformations of cohesin and discuss the regulation of loop extrusion by cohesin-binding factors and loop-extrusion barriers. Finally, we propose a dimeric inchworm model for cohesin-mediated loop extrusion.</p>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"91 ","pages":"102310"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Genetics & Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.gde.2025.102310","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chromosomes in eukaryotic cells undergo compaction at multiple levels and are folded into hierarchical structures to fit into the nucleus with limited dimensions. Three-dimensional genome organization needs to be coordinated with chromosome-templated processes, including DNA replication and gene transcription. As an ATPase molecular machine, the cohesin complex is a major driver of genome folding, which regulates transcription by modulating promoter-enhancer contacts. Here, we review our current understanding of genome folding by cohesin. We summarize the available evidence supporting a role of loop extrusion by cohesin in forming chromatin loops and topologically associating domains. We describe different conformations of cohesin and discuss the regulation of loop extrusion by cohesin-binding factors and loop-extrusion barriers. Finally, we propose a dimeric inchworm model for cohesin-mediated loop extrusion.
期刊介绍:
Current Opinion in Genetics and Development aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In Current Opinion in Genetics and Development we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.[...]
The subject of Genetics and Development is divided into six themed sections, each of which is reviewed once a year:
• Cancer Genomics
• Genome Architecture and Expression
• Molecular and genetic basis of disease
• Developmental mechanisms, patterning and evolution
• Cell reprogramming, regeneration and repair
• Genetics of Human Origin / Evolutionary genetics (alternate years)