Metabolic Engineering of Yeast.

IF 10.4 1区 生物学 Q1 BIOPHYSICS Annual Review of Biophysics Pub Date : 2025-01-21 DOI:10.1146/annurev-biophys-070924-103134
Shuobo Shi, Yu Chen, Jens Nielsen
{"title":"Metabolic Engineering of Yeast.","authors":"Shuobo Shi, Yu Chen, Jens Nielsen","doi":"10.1146/annurev-biophys-070924-103134","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial cell factories have been developed to produce various compounds in a sustainable and economically viable manner. The yeast <i>Saccharomyces cerevisiae</i> has been used as a platform cell factory in industrial biotechnology with numerous advantages, including ease of operation, rapid growth, and tolerance for various industrial stressors. Advances in synthetic biology and metabolic models have accelerated the design-build-test-learn cycle in metabolic engineering, significantly facilitating the development of yeast strains with complex phenotypes, including the redirection of metabolic fluxes to desired products, the expansion of the spectrum of usable substrates, and the improvement of the physiological properties of strain. Strains with enhanced titer, rate, and yield are now competing with traditional petroleum-based industrial approaches. This review highlights recent advances and perspectives in the metabolic engineering of yeasts for the production of a variety of compounds, including fuels, chemicals, proteins, and peptides, as well as advancements in synthetic biology tools and mathematical modeling.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":" ","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biophys-070924-103134","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial cell factories have been developed to produce various compounds in a sustainable and economically viable manner. The yeast Saccharomyces cerevisiae has been used as a platform cell factory in industrial biotechnology with numerous advantages, including ease of operation, rapid growth, and tolerance for various industrial stressors. Advances in synthetic biology and metabolic models have accelerated the design-build-test-learn cycle in metabolic engineering, significantly facilitating the development of yeast strains with complex phenotypes, including the redirection of metabolic fluxes to desired products, the expansion of the spectrum of usable substrates, and the improvement of the physiological properties of strain. Strains with enhanced titer, rate, and yield are now competing with traditional petroleum-based industrial approaches. This review highlights recent advances and perspectives in the metabolic engineering of yeasts for the production of a variety of compounds, including fuels, chemicals, proteins, and peptides, as well as advancements in synthetic biology tools and mathematical modeling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
酵母代谢工程。
微生物细胞工厂已经发展到以可持续和经济可行的方式生产各种化合物。酿酒酵母具有易于操作、生长迅速、对各种工业压力具有耐受性等优点,已被用作工业生物技术的平台细胞工厂。合成生物学和代谢模型的进步加速了代谢工程中的设计-构建-测试-学习周期,极大地促进了具有复杂表型的酵母菌株的开发,包括将代谢通量重新定向到所需产品,扩大可用底物的范围,以及改善菌株的生理特性。提高滴度、速率和产量的菌株现在正在与传统的石油工业方法竞争。本文综述了酵母代谢工程的最新进展和前景,酵母代谢工程用于生产各种化合物,包括燃料、化学品、蛋白质和肽,以及合成生物学工具和数学建模的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Biophysics
Annual Review of Biophysics 生物-生物物理
CiteScore
21.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Biophysics, in publication since 1972, covers significant developments in the field of biophysics, including macromolecular structure, function and dynamics, theoretical and computational biophysics, molecular biophysics of the cell, physical systems biology, membrane biophysics, biotechnology, nanotechnology, and emerging techniques.
期刊最新文献
Information Processing in Biochemical Networks. Kinetics of Amyloid Oligomer Formation. Mechanics of Single Cytoskeletal Filaments. Statistical Thermodynamics of the Protein Ensemble: Mediating Function and Evolution. Mechanisms for DNA Interplay in Eukaryotic Transcription Factors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1