The differential impacts of equivalent gating-charge mutations in voltage-gated sodium channels.

IF 3.3 2区 医学 Q1 PHYSIOLOGY Journal of General Physiology Pub Date : 2025-03-03 Epub Date: 2025-01-17 DOI:10.1085/jgp.202413669
Eslam Elhanafy, Amin Akbari Ahangar, Rebecca Roth, Tamer M Gamal El-Din, John R Bankston, Jing Li
{"title":"The differential impacts of equivalent gating-charge mutations in voltage-gated sodium channels.","authors":"Eslam Elhanafy, Amin Akbari Ahangar, Rebecca Roth, Tamer M Gamal El-Din, John R Bankston, Jing Li","doi":"10.1085/jgp.202413669","DOIUrl":null,"url":null,"abstract":"<p><p>Voltage-gated sodium (Nav) channels are pivotal for cellular signaling, and mutations in Nav channels can lead to excitability disorders in cardiac, muscular, and neural tissues. A major cluster of pathological mutations localizes in the voltage-sensing domains (VSDs), resulting in either gain-of-function, loss-of-function effects, or both. However, the mechanism behind this functional diversity of mutations at equivalent positions remains elusive. Through hotspot analysis, we identified three gating charges (R1, R2, and R3) as major mutational hotspots in VSDs. The same amino acid substitutions at equivalent gating-charge positions in VSDI and VSDII of the cardiac sodium channel Nav1.5 show differential gating property impacts in electrophysiology measurements. We conducted molecular dynamics (MD) simulations on wild-type channels and six mutants to elucidate the structural basis of their differential impacts. Our 120-µs MD simulations with applied external electric fields captured VSD state transitions and revealed the differential structural dynamics between equivalent R-to-Q mutants. Notably, we observed transient leaky conformations in some mutants during structural transitions, offering a detailed structural explanation for gating-pore currents. Our salt-bridge network analysis uncovered VSD-specific and state-dependent interactions among gating charges, countercharges, and lipids. This detailed analysis revealed how mutations disrupt critical electrostatic interactions, thereby altering VSD permeability and modulating gating properties. By demonstrating the crucial importance of considering the specific structural context of each mutation, our study advances our understanding of structure-function relationships in Nav channels. Our work establishes a robust framework for future investigations into the molecular basis of ion channel-related disorders.</p>","PeriodicalId":54828,"journal":{"name":"Journal of General Physiology","volume":"157 2","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740781/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1085/jgp.202413669","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Voltage-gated sodium (Nav) channels are pivotal for cellular signaling, and mutations in Nav channels can lead to excitability disorders in cardiac, muscular, and neural tissues. A major cluster of pathological mutations localizes in the voltage-sensing domains (VSDs), resulting in either gain-of-function, loss-of-function effects, or both. However, the mechanism behind this functional diversity of mutations at equivalent positions remains elusive. Through hotspot analysis, we identified three gating charges (R1, R2, and R3) as major mutational hotspots in VSDs. The same amino acid substitutions at equivalent gating-charge positions in VSDI and VSDII of the cardiac sodium channel Nav1.5 show differential gating property impacts in electrophysiology measurements. We conducted molecular dynamics (MD) simulations on wild-type channels and six mutants to elucidate the structural basis of their differential impacts. Our 120-µs MD simulations with applied external electric fields captured VSD state transitions and revealed the differential structural dynamics between equivalent R-to-Q mutants. Notably, we observed transient leaky conformations in some mutants during structural transitions, offering a detailed structural explanation for gating-pore currents. Our salt-bridge network analysis uncovered VSD-specific and state-dependent interactions among gating charges, countercharges, and lipids. This detailed analysis revealed how mutations disrupt critical electrostatic interactions, thereby altering VSD permeability and modulating gating properties. By demonstrating the crucial importance of considering the specific structural context of each mutation, our study advances our understanding of structure-function relationships in Nav channels. Our work establishes a robust framework for future investigations into the molecular basis of ion channel-related disorders.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电压门控钠通道中等效门控电荷突变的差异影响。
电压门控钠(Nav)通道是细胞信号传导的关键,Nav通道的突变可导致心脏、肌肉和神经组织的兴奋性障碍。一组主要的病理突变位于电压感应域(vsd),导致功能获得或功能丧失效应,或两者兼而有之。然而,在等效位置突变的功能多样性背后的机制仍然是难以捉摸的。通过热点分析,我们确定了三个门控电荷(R1、R2和R3)是vsd的主要突变热点。在心脏钠通道Nav1.5的VSDI和VSDII的等效门控电荷位置上,相同的氨基酸取代在电生理测量中表现出不同的门控特性影响。我们对野生型通道和6个突变体进行了分子动力学(MD)模拟,以阐明其差异影响的结构基础。我们在外加电场的120µs MD模拟中捕获了VSD状态的转变,并揭示了等效R-to-Q突变体之间的差异结构动力学。值得注意的是,我们在结构转变过程中观察到一些突变体的瞬态泄漏构象,为门控孔电流提供了详细的结构解释。我们的盐桥网络分析揭示了门控电荷、反电荷和脂质之间的vsd特异性和状态依赖性相互作用。这项详细的分析揭示了突变如何破坏关键的静电相互作用,从而改变VSD的磁导率和调制门控特性。通过证明考虑每个突变的特定结构背景的重要性,我们的研究推进了我们对Nav通道结构-功能关系的理解。我们的工作为未来研究离子通道相关疾病的分子基础建立了一个强有力的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.00
自引率
10.50%
发文量
88
审稿时长
6-12 weeks
期刊介绍: General physiology is the study of biological mechanisms through analytical investigations, which decipher the molecular and cellular mechanisms underlying biological function at all levels of organization. The mission of Journal of General Physiology (JGP) is to publish mechanistic and quantitative molecular and cellular physiology of the highest quality, to provide a best-in-class author experience, and to nurture future generations of independent researchers. The major emphasis is on physiological problems at the cellular and molecular level.
期刊最新文献
Mechanisms underlying the distinct K+ dependencies of periodic paralysis. Reduced voltage-activated Ca2+ release flux in muscle fibers from a rat model of Duchenne dystrophy. ALLIN: A tool for annotation of a protein alignment combined with structural visualization. How could simulations elucidate Nav1.5 channel blockers mechanism? Drugs exhibit diverse binding modes and access routes in the Nav1.5 cardiac sodium channel pore.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1