Artificial Intelligence in Transcranial Doppler Ultrasonography.

IF 1.1 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Current Medical Imaging Reviews Pub Date : 2025-01-17 DOI:10.2174/0115734056331493241217075436
Antonio Siniscalchi, Vincenzo Inghingolo, Piergiorgio Lochner, Giovanni Malferrari
{"title":"Artificial Intelligence in Transcranial Doppler Ultrasonography.","authors":"Antonio Siniscalchi, Vincenzo Inghingolo, Piergiorgio Lochner, Giovanni Malferrari","doi":"10.2174/0115734056331493241217075436","DOIUrl":null,"url":null,"abstract":"<p><p>Transcranial Doppler is an instrumental ultrasound method capable of providing data on various brain pathologies, in particular, the study of cerebral hemodynamics in stroke, quickly, economically, and with repeatability of the data themselves. However, literature reviews from clinical studies and clinical trials reported that it is an operator-dependent method, and the data can be influenced by external factors, such as noise, which may require greater standardization of the parameters. Artificial intelligence can be utilized on transcranial Doppler to increase the accuracy and precision of the data collected while decreasing operator dependencies. In a time-dependent pathology, such as stroke, characterized by hemodynamic evolution, the use of artificial intelligence in transcranial Doppler ultrasound could represent beneficial support for better diagnosis and treatment in time-dependent pathologies, such as stroke.</p>","PeriodicalId":54215,"journal":{"name":"Current Medical Imaging Reviews","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Imaging Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734056331493241217075436","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Transcranial Doppler is an instrumental ultrasound method capable of providing data on various brain pathologies, in particular, the study of cerebral hemodynamics in stroke, quickly, economically, and with repeatability of the data themselves. However, literature reviews from clinical studies and clinical trials reported that it is an operator-dependent method, and the data can be influenced by external factors, such as noise, which may require greater standardization of the parameters. Artificial intelligence can be utilized on transcranial Doppler to increase the accuracy and precision of the data collected while decreasing operator dependencies. In a time-dependent pathology, such as stroke, characterized by hemodynamic evolution, the use of artificial intelligence in transcranial Doppler ultrasound could represent beneficial support for better diagnosis and treatment in time-dependent pathologies, such as stroke.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能在经颅多普勒超声检查中的应用。
经颅多普勒是一种仪器超声方法,能够提供各种脑部病理数据,特别是中风脑血流动力学的研究,快速,经济,并且具有数据本身的可重复性。然而,临床研究和临床试验的文献综述表明,这是一种依赖于操作者的方法,数据可能受到噪声等外部因素的影响,这可能需要对参数进行更大的标准化。人工智能可用于经颅多普勒,以提高所收集数据的准确性和精度,同时减少对操作员的依赖。在以血流动力学演变为特征的时间依赖性病理中,如中风,在经颅多普勒超声中使用人工智能可以为更好地诊断和治疗时间依赖性病理(如中风)提供有益的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
246
审稿时长
1 months
期刊介绍: Current Medical Imaging Reviews publishes frontier review articles, original research articles, drug clinical trial studies and guest edited thematic issues on all the latest advances on medical imaging dedicated to clinical research. All relevant areas are covered by the journal, including advances in the diagnosis, instrumentation and therapeutic applications related to all modern medical imaging techniques. The journal is essential reading for all clinicians and researchers involved in medical imaging and diagnosis.
期刊最新文献
A Novel Fragmentation-based Approach for Accurate Segmentation of Small-Sized Brain Tumors in MRI Images. Left Basal Ganglia Stroke-induced more Alterations of Functional Connectivity: Evidence from an fMRI Study. Demographic Characteristics of Pneumoconiosis Cases: A Single Centre Experience. A Robust Approach to Early Glaucoma Identification from Retinal Fundus Images using Dirichlet-based Weighted Average Ensemble and Bayesian Optimization. Application Value of A Clinical Radiomic Nomogram for Identifying Diabetic Nephropathy and Nondiabetic Renal Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1