Igor Bundalevski, Amy S Harrison, Michael F Dzeda, Laura A Doyle, Hungcheng Chen
{"title":"Use of 3D Printing Technology to Improve Lead Shield Fabrication for Electron Therapy of the Face.","authors":"Igor Bundalevski, Amy S Harrison, Michael F Dzeda, Laura A Doyle, Hungcheng Chen","doi":"10.1016/j.prro.2024.12.008","DOIUrl":null,"url":null,"abstract":"<p><p>Superficial lesions of the face are often treated with an electron beam and surface collimation utilizing a conformal lead shield with an opening around the region of treatment (ROT). To fabricate the lead shield, an imprint of the patient face is needed. Historically, this was achieved using a laborious and time-consuming process that involved a gypsum imprinted model (GIM) of the patient topography. We propose utilization of 3-dimentional (3D) printing technology to create a 3-dimensional printed custom model (3D-PCM) of the patient facial topography as a more accurate and more efficient alternative to GIM. GIM and 3D-PCM were generated for three patients requiring en face electron therapy of the nose. The models for both methods were then CT-scanned and fused rigidly to the CT of the patient. The accuracy of the models was compared with the CT image of the patient via visual inspection and the Sørensen-Dice similarity coefficient (DSC). The efficiency of the two methods was evaluated by the average time needed to complete each process based on user-reported experience. The average DSC between the patient and GIM is 0.95336 (standard deviation (SD) = 0.0099479), while the average DSC of the patient and 3D-PCM is 0.97886 (SD = 0.0037441). With respect to efficiency, the average time to fabricate and dry GIM is 54.5 hours with hands-on time of 2.5 hours, while generation of 3D-PCM takes about 6.5 hours, with hands on time of approximately 2.5 hours. 3D-PCMs based on CT scan images are found to be an excellent substitute for GIMs by exhibiting a higher degree of fidelity with patient's anatomy, requiring significantly less time to complete, being less labor intensive, and allowing for greater patient comfort. The disadvantage of exposing the patient to radiation associated with the CT scan image acquisition for designing a 3D-PCM could be eliminated by employing 3D-camera scanning technology.</p>","PeriodicalId":54245,"journal":{"name":"Practical Radiation Oncology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Practical Radiation Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.prro.2024.12.008","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Superficial lesions of the face are often treated with an electron beam and surface collimation utilizing a conformal lead shield with an opening around the region of treatment (ROT). To fabricate the lead shield, an imprint of the patient face is needed. Historically, this was achieved using a laborious and time-consuming process that involved a gypsum imprinted model (GIM) of the patient topography. We propose utilization of 3-dimentional (3D) printing technology to create a 3-dimensional printed custom model (3D-PCM) of the patient facial topography as a more accurate and more efficient alternative to GIM. GIM and 3D-PCM were generated for three patients requiring en face electron therapy of the nose. The models for both methods were then CT-scanned and fused rigidly to the CT of the patient. The accuracy of the models was compared with the CT image of the patient via visual inspection and the Sørensen-Dice similarity coefficient (DSC). The efficiency of the two methods was evaluated by the average time needed to complete each process based on user-reported experience. The average DSC between the patient and GIM is 0.95336 (standard deviation (SD) = 0.0099479), while the average DSC of the patient and 3D-PCM is 0.97886 (SD = 0.0037441). With respect to efficiency, the average time to fabricate and dry GIM is 54.5 hours with hands-on time of 2.5 hours, while generation of 3D-PCM takes about 6.5 hours, with hands on time of approximately 2.5 hours. 3D-PCMs based on CT scan images are found to be an excellent substitute for GIMs by exhibiting a higher degree of fidelity with patient's anatomy, requiring significantly less time to complete, being less labor intensive, and allowing for greater patient comfort. The disadvantage of exposing the patient to radiation associated with the CT scan image acquisition for designing a 3D-PCM could be eliminated by employing 3D-camera scanning technology.
期刊介绍:
The overarching mission of Practical Radiation Oncology is to improve the quality of radiation oncology practice. PRO''s purpose is to document the state of current practice, providing background for those in training and continuing education for practitioners, through discussion and illustration of new techniques, evaluation of current practices, and publication of case reports. PRO strives to provide its readers content that emphasizes knowledge "with a purpose." The content of PRO includes:
Original articles focusing on patient safety, quality measurement, or quality improvement initiatives
Original articles focusing on imaging, contouring, target delineation, simulation, treatment planning, immobilization, organ motion, and other practical issues
ASTRO guidelines, position papers, and consensus statements
Essays that highlight enriching personal experiences in caring for cancer patients and their families.