Temporal logic inference for interpretable fault diagnosis of bearings via sparse and structured neural attention.

Gang Chen, Guangming Dong
{"title":"Temporal logic inference for interpretable fault diagnosis of bearings via sparse and structured neural attention.","authors":"Gang Chen, Guangming Dong","doi":"10.1016/j.isatra.2025.01.013","DOIUrl":null,"url":null,"abstract":"<p><p>This paper addresses the critical challenge of interpretability in machine learning methods for machine fault diagnosis by introducing a novel ad hoc interpretable neural network structure called Sparse Temporal Logic Network (STLN). STLN conceptualizes network neurons as logical propositions and constructs formal connections between them using specified logical operators, which can be articulated and understood as a formal language called Weighted Signal Temporal Logic. The network includes a basic word network using wavelet kernels to extract intelligible features, a transformer encoder with sparse and structured neural attention to locate informative signal segments relevant to decision-making, and a logic network to synthesize a coherent language for fault explanation. STLN retains the advantageous properties of traditional neural networks while facilitating formal interpretation through temporal logic descriptions. Empirical validation on experimental datasets shows that STLN not only performs robustly in fault diagnosis tasks, but also provides interpretable explanations of the decision-making process, thus enabling interpretable fault diagnosis.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.01.013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the critical challenge of interpretability in machine learning methods for machine fault diagnosis by introducing a novel ad hoc interpretable neural network structure called Sparse Temporal Logic Network (STLN). STLN conceptualizes network neurons as logical propositions and constructs formal connections between them using specified logical operators, which can be articulated and understood as a formal language called Weighted Signal Temporal Logic. The network includes a basic word network using wavelet kernels to extract intelligible features, a transformer encoder with sparse and structured neural attention to locate informative signal segments relevant to decision-making, and a logic network to synthesize a coherent language for fault explanation. STLN retains the advantageous properties of traditional neural networks while facilitating formal interpretation through temporal logic descriptions. Empirical validation on experimental datasets shows that STLN not only performs robustly in fault diagnosis tasks, but also provides interpretable explanations of the decision-making process, thus enabling interpretable fault diagnosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏和结构化神经注意的时间逻辑推理轴承可解释故障诊断。
本文通过引入一种称为稀疏时序逻辑网络(STLN)的新型可解释神经网络结构,解决了机器故障诊断中机器学习方法的可解释性的关键挑战。STLN将网络神经元概念化为逻辑命题,并使用指定的逻辑运算符构建它们之间的形式连接,这些逻辑运算符可以被表述和理解为一种称为加权信号时序逻辑的形式语言。该网络包括一个使用小波核提取可理解特征的基本词网络,一个具有稀疏和结构化神经注意的变压器编码器,用于定位与决策相关的信息信号片段,以及一个逻辑网络,用于合成连贯的语言进行故障解释。STLN保留了传统神经网络的优点,同时通过时间逻辑描述促进形式化解释。实验数据集的经验验证表明,STLN不仅在故障诊断任务中表现稳健,而且对决策过程提供了可解释的解释,从而实现了可解释的故障诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling and design of power conditioning unit of CubeSat electrical power subsystem with robust nonlinear MPPT controller. Nonlinear acceleration disturbance observer to reject transient peak disturbances for an inertial stabilization-tracking platform. Sensorless Control of Permanent magnet in-wheel motor for EVs Using Global Fast Terminal Sliding Mode Observer. Application of a multi-dimensional synchronous feature mode decomposition for machinery fault diagnosis. Robust finite-time input-to-state stability via impulsive hybrid control for uncertain dynamical systems with disturbances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1