Memristors enabling probabilistic AI at the edge

IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2025-01-17 DOI:10.1038/s43588-024-00761-x
Damien Querlioz
{"title":"Memristors enabling probabilistic AI at the edge","authors":"Damien Querlioz","doi":"10.1038/s43588-024-00761-x","DOIUrl":null,"url":null,"abstract":"By combining several probabilistic AI algorithms, a recent study demonstrates experimentally that the inherent noise and variation in memristor nanodevices can be exploited as features for energy-efficient on-chip learning.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 1","pages":"7-8"},"PeriodicalIF":18.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00761-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

By combining several probabilistic AI algorithms, a recent study demonstrates experimentally that the inherent noise and variation in memristor nanodevices can be exploited as features for energy-efficient on-chip learning.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在边缘启用概率AI的忆阻器。
通过结合几种概率人工智能算法,最近的一项研究通过实验证明,记忆电阻纳米器件的固有噪声和变化可以作为高效的片上学习的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
Unlocking single-cell level and continuous whole-slide insights in spatial transcriptomics with PanoSpace. Discovering the laws behind complex networked systems. Decoding cell state transitions driven by dynamic cell-cell communication in spatial transcriptomics. Mapping cell-cell communication networks onto cell-state transition trajectories via a dynamic model. Riemannian denoising model for molecular structure optimization with chemical accuracy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1