Concurrent targeted delivery of doxorubicin and curcumin to the cancer cells using simple and versatile ligand-installed multifaceted chitosan-based nanoconjugates†
Sourav Barman, Sayoni Maitra Roy, Purvi Kishore, Malabika Ghosh, Pousali Bag, Ankan Kumar Sarkar, Tapas Ghatak, Partha Sona Maji, Arnab Basu, Rupam Mukherjee, Surya K. Ghosh, Ankan Dutta Chowdhury and Amit Ranjan Maity
{"title":"Concurrent targeted delivery of doxorubicin and curcumin to the cancer cells using simple and versatile ligand-installed multifaceted chitosan-based nanoconjugates†","authors":"Sourav Barman, Sayoni Maitra Roy, Purvi Kishore, Malabika Ghosh, Pousali Bag, Ankan Kumar Sarkar, Tapas Ghatak, Partha Sona Maji, Arnab Basu, Rupam Mukherjee, Surya K. Ghosh, Ankan Dutta Chowdhury and Amit Ranjan Maity","doi":"10.1039/D4TB01809E","DOIUrl":null,"url":null,"abstract":"<p >Existing chemotherapeutic approaches against refractory cancers are ineffective due to off-target effects, inefficient delivery, and inadequate accumulation of anticancer drugs at the tumor site, which causes limited efficiency of drug treatment and toxicity to neighboring healthy cells. The development of nano-based drug delivery systems (DDSs) with the goal of delivering desired therapeutic doses to the diseased cells and has already proven to be a promising strategy to address these challenges. Our study focuses on achieving an efficient tumor-targeted delivery of a combination of drugs for therapeutic benefits by developing a versatile DDS by following a simple one-step chemical approach. We used low-molecular-weight chitosan and modified its primary amine groups with reactive forms of cholesterol and folic acid by simple chemical tools and thus prepared folic acid–chitosan–cholesterol graft copolymer. The polymer contains numerous residual primary amine groups, which offer enough water solubility and positive charge to its polymeric backbone to foster the interaction of negatively charged and/or hydrophobic drugs to load and encapsulate a wide variety of drugs within it <em>via</em> various non-bonding interactions. We used curcumin and doxorubicin as the combination of drugs and thus finally prepared targeted nanoconjugates (targeted NCs). <em>In vitro</em> cellular experiments show that our developed targeted NCs demonstrate 3–5 times higher cellular uptake than non-targeted NCs at various incubation times (2 h, 8 h, and 12 h) in KB cells where folate receptors are overexpressed. This enhanced cellular uptake of targeted NCs and the following delivery of drugs in the cytosol and its disposition to the nucleus exhibit a substantial amount of toxicity to KB cells towards an effective therapeutic strategy for treatment.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 7","pages":" 2490-2503"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb01809e","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Existing chemotherapeutic approaches against refractory cancers are ineffective due to off-target effects, inefficient delivery, and inadequate accumulation of anticancer drugs at the tumor site, which causes limited efficiency of drug treatment and toxicity to neighboring healthy cells. The development of nano-based drug delivery systems (DDSs) with the goal of delivering desired therapeutic doses to the diseased cells and has already proven to be a promising strategy to address these challenges. Our study focuses on achieving an efficient tumor-targeted delivery of a combination of drugs for therapeutic benefits by developing a versatile DDS by following a simple one-step chemical approach. We used low-molecular-weight chitosan and modified its primary amine groups with reactive forms of cholesterol and folic acid by simple chemical tools and thus prepared folic acid–chitosan–cholesterol graft copolymer. The polymer contains numerous residual primary amine groups, which offer enough water solubility and positive charge to its polymeric backbone to foster the interaction of negatively charged and/or hydrophobic drugs to load and encapsulate a wide variety of drugs within it via various non-bonding interactions. We used curcumin and doxorubicin as the combination of drugs and thus finally prepared targeted nanoconjugates (targeted NCs). In vitro cellular experiments show that our developed targeted NCs demonstrate 3–5 times higher cellular uptake than non-targeted NCs at various incubation times (2 h, 8 h, and 12 h) in KB cells where folate receptors are overexpressed. This enhanced cellular uptake of targeted NCs and the following delivery of drugs in the cytosol and its disposition to the nucleus exhibit a substantial amount of toxicity to KB cells towards an effective therapeutic strategy for treatment.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices