The Atlas of Protein-Protein Interactions in Cancer (APPIC)-a webtool to visualize and analyze cancer subtypes.

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY NAR cancer Pub Date : 2025-01-15 eCollection Date: 2025-03-01 DOI:10.1093/narcan/zcae047
Benjamin Ahn, Charissa Chou, Caden Chou, Jennifer Chen, Amelia Zug, Yigit Baykara, Jessica Claus, Sean M Hacking, Alper Uzun, Ece D Gamsiz Uzun
{"title":"The Atlas of Protein-Protein Interactions in Cancer (APPIC)-a webtool to visualize and analyze cancer subtypes.","authors":"Benjamin Ahn, Charissa Chou, Caden Chou, Jennifer Chen, Amelia Zug, Yigit Baykara, Jessica Claus, Sean M Hacking, Alper Uzun, Ece D Gamsiz Uzun","doi":"10.1093/narcan/zcae047","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is a complex disease with heterogeneous mutational and gene expression patterns. Subgroups of patients who share a phenotype might share a specific genetic architecture including protein-protein interactions (PPIs). We developed the Atlas of Protein-Protein Interactions in Cancer (APPIC), an interactive webtool that provides PPI subnetworks of 10 cancer types and their subtypes shared by cohorts of patients. To achieve this, we analyzed publicly available RNA sequencing data from patients and identified PPIs specific to 26 distinct cancer subtypes. APPIC compiles biological and clinical information from various databases, including the Human Protein Atlas, Hugo Gene Nomenclature Committee, g:Profiler, cBioPortal and Clue.io. The user-friendly interface allows for both 2D and 3D PPI network visualizations, enhancing the usability and interpretability of complex data. For advanced users seeking greater customization, APPIC conveniently provides all output files for further analysis and visualization on other platforms or tools. By offering comprehensive insights into PPIs and their role in cancer, APPIC aims to support the discovery of tumor subtype-specific novel targeted therapeutics and drug repurposing. APPIC is freely available at https://appic.brown.edu.</p>","PeriodicalId":94149,"journal":{"name":"NAR cancer","volume":"7 1","pages":"zcae047"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734624/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/narcan/zcae047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer is a complex disease with heterogeneous mutational and gene expression patterns. Subgroups of patients who share a phenotype might share a specific genetic architecture including protein-protein interactions (PPIs). We developed the Atlas of Protein-Protein Interactions in Cancer (APPIC), an interactive webtool that provides PPI subnetworks of 10 cancer types and their subtypes shared by cohorts of patients. To achieve this, we analyzed publicly available RNA sequencing data from patients and identified PPIs specific to 26 distinct cancer subtypes. APPIC compiles biological and clinical information from various databases, including the Human Protein Atlas, Hugo Gene Nomenclature Committee, g:Profiler, cBioPortal and Clue.io. The user-friendly interface allows for both 2D and 3D PPI network visualizations, enhancing the usability and interpretability of complex data. For advanced users seeking greater customization, APPIC conveniently provides all output files for further analysis and visualization on other platforms or tools. By offering comprehensive insights into PPIs and their role in cancer, APPIC aims to support the discovery of tumor subtype-specific novel targeted therapeutics and drug repurposing. APPIC is freely available at https://appic.brown.edu.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
癌症中蛋白质-蛋白质相互作用图谱(APPIC)-一个可视化和分析癌症亚型的网络工具。
癌症是一种具有异质突变和基因表达模式的复杂疾病。共享表型的患者亚组可能共享特定的遗传结构,包括蛋白质-蛋白质相互作用(PPIs)。我们开发了癌症中蛋白质-蛋白质相互作用图谱(APPIC),这是一个交互式网络工具,提供了10种癌症类型及其患者队列共享的亚型的PPI子网络。为了实现这一目标,我们分析了来自患者的公开可用RNA测序数据,并确定了26种不同癌症亚型特异性的PPIs。APPIC从各种数据库中编译生物学和临床信息,包括人类蛋白质图谱、雨果基因命名委员会、g:Profiler、cBioPortal和Clue.io。用户友好的界面允许2D和3D PPI网络可视化,增强了复杂数据的可用性和可解释性。对于寻求更大定制的高级用户,APPIC方便地提供了所有输出文件,以便在其他平台或工具上进行进一步分析和可视化。通过提供PPIs及其在癌症中的作用的全面见解,APPIC旨在支持发现肿瘤亚型特异性的新型靶向治疗和药物再利用。APPIC可在https://appic.brown.edu免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍:
期刊最新文献
Histone H3E50K remodels chromatin to confer oncogenic activity and support an EMT phenotype. Specific modulation of 28S_Um2402 rRNA 2'-O-ribose methylation as a novel epitranscriptomic marker of ZEB1-induced epithelial-mesenchymal transition in different mammary cell contexts. The Atlas of Protein-Protein Interactions in Cancer (APPIC)-a webtool to visualize and analyze cancer subtypes. Spatial transcriptomics in breast cancer reveals tumour microenvironment-driven drug responses and clonal therapeutic heterogeneity. RAD51 recruitment but not replication fork stability associates with PARP inhibitor response in ovarian cancer patient-derived xenograft models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1