Unveiling next-generation organic photovoltaics: Quantum mechanical insights into non-fullerene donor-acceptor compounds.

Zunaira Shafiq, Nadia Akram, Khalid Mahmood Zia, Saba Jamil, Songnan Li, Norah Alhokbany, Muhammad Ramzan Saeed Ashraf Janjua
{"title":"Unveiling next-generation organic photovoltaics: Quantum mechanical insights into non-fullerene donor-acceptor compounds.","authors":"Zunaira Shafiq, Nadia Akram, Khalid Mahmood Zia, Saba Jamil, Songnan Li, Norah Alhokbany, Muhammad Ramzan Saeed Ashraf Janjua","doi":"10.1016/j.saa.2025.125741","DOIUrl":null,"url":null,"abstract":"<p><p>Organic photovoltaics (OPVs) have improved greatly in recent years in pursuit for efficient and sustainable energy conversion methods. Specifically, utilizing quantum chemistry approaches such as density functional theory (DFT), the electronic structures, energy levels, and charge transport characteristics of donor-π-acceptor (D-π-A) systems based on non-fullerene donor and acceptor molecules have been examined and synthesized. Non-fullerene acceptors offer several advantages over traditional fullerene-based materials, such as enhanced light absorption, modifiable energy levels, and reduced recombination losses. Quantum mechanical simulations are helpful in the design and development of these materials because they can accurately predict the energy level alignment, molecule interactions, and charge transport properties needed for the high-efficiency of OPVs. The research begins through the selection of electron-donating and electron-accepting non-fullerene polymeric molecules using the unique properties of non-fullerene derivatives and non-fullerene acceptors. The theory uses the B3LYP-D3 method with a 6-31+G (d,p) basis set. PY-IT is used as the reference molecule, and eight molecules PY-IT01-PY-IT08, has been created by changing the end caps of the acceptor units. The created compound has superior photovoltaic characteristics. Focus has been specifically given to the frontier molecular orbitals (FMOs), natural bond order (NBO) analysis, reorganization energies (RE), and absorption spectra in order to assess the viability of charge separation and efficient light absorption. Finally, the molecular electrostatic potential (MEP) analysis, transition density matrix (TDM) analysis, and improved open circuit voltage (Voc) all have been computed. The results of the findings provide new insight to design organic solar cells (OSCs) with improved photovoltaic and solar energy conversion capabilities, which has great potential for the future development of more dependable and efficient OSCs.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"330 ","pages":"125741"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.saa.2025.125741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Organic photovoltaics (OPVs) have improved greatly in recent years in pursuit for efficient and sustainable energy conversion methods. Specifically, utilizing quantum chemistry approaches such as density functional theory (DFT), the electronic structures, energy levels, and charge transport characteristics of donor-π-acceptor (D-π-A) systems based on non-fullerene donor and acceptor molecules have been examined and synthesized. Non-fullerene acceptors offer several advantages over traditional fullerene-based materials, such as enhanced light absorption, modifiable energy levels, and reduced recombination losses. Quantum mechanical simulations are helpful in the design and development of these materials because they can accurately predict the energy level alignment, molecule interactions, and charge transport properties needed for the high-efficiency of OPVs. The research begins through the selection of electron-donating and electron-accepting non-fullerene polymeric molecules using the unique properties of non-fullerene derivatives and non-fullerene acceptors. The theory uses the B3LYP-D3 method with a 6-31+G (d,p) basis set. PY-IT is used as the reference molecule, and eight molecules PY-IT01-PY-IT08, has been created by changing the end caps of the acceptor units. The created compound has superior photovoltaic characteristics. Focus has been specifically given to the frontier molecular orbitals (FMOs), natural bond order (NBO) analysis, reorganization energies (RE), and absorption spectra in order to assess the viability of charge separation and efficient light absorption. Finally, the molecular electrostatic potential (MEP) analysis, transition density matrix (TDM) analysis, and improved open circuit voltage (Voc) all have been computed. The results of the findings provide new insight to design organic solar cells (OSCs) with improved photovoltaic and solar energy conversion capabilities, which has great potential for the future development of more dependable and efficient OSCs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示下一代有机光伏:非富勒烯供体-受体化合物的量子力学见解。
近年来,有机光伏(OPVs)在追求高效和可持续的能量转换方法方面取得了很大的进步。具体而言,利用密度泛函理论(DFT)等量子化学方法,研究并合成了基于非富勒烯给体和受体分子的给体-π-受体(D-π-A)体系的电子结构、能级和电荷输运特性。与传统的富勒烯基材料相比,非富勒烯受体具有几个优点,如增强的光吸收、可修改的能级和减少的重组损失。量子力学模拟有助于这些材料的设计和开发,因为它们可以准确地预测高效opv所需的能级排列、分子相互作用和电荷输运性质。研究开始于利用非富勒烯衍生物和非富勒烯受体的独特性质来选择给电子和接受电子的非富勒烯聚合物分子。该理论采用6-31+G (d,p)基集的B3LYP-D3方法。以PY-IT为参比分子,通过改变受体单元的端帽,生成了8个分子PY-IT01-PY-IT08。所创造的化合物具有优越的光伏特性。重点研究了前沿分子轨道(FMOs)、自然键序(NBO)分析、重组能(RE)和吸收光谱,以评估电荷分离和有效光吸收的可行性。最后,计算了分子静电势(MEP)分析、过渡密度矩阵(TDM)分析和改进开路电压(Voc)。研究结果为设计具有更好的光伏和太阳能转换能力的有机太阳能电池(OSCs)提供了新的思路,为未来开发更可靠、更高效的有机太阳能电池提供了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The impact of halogen substitution quantities on the fluorescence intensity ratio of lanthanide Schiff base complexes. Dual-mode luminescence and colorimetric sensing for Al3+ and Fe2+/Fe3+ ions in water using a zinc coordination polymer. A mitochondrion-targeted poly(N-isopropylacrylamide-coacrylic acid) nanohydrogel with a fluorescent bioprobe for ferrous ion imaging in vitro and in vivo. A paper-based SERS/colorimetry substrate for reliable detection. A portable paper-based surface enhanced Raman scattering platform for Al3+ sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1