Modification of black soybean (Glycine max(L.)merr.) residue insoluble dietary fiber with ultrasonic, microwave, high temperature and high-pressure, and extrusion

IF 8.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Food Chemistry Pub Date : 2025-01-23 DOI:10.1016/j.foodchem.2025.143020
Hongyu Lei, Yu Zhang, Tianci Guan, Mengge Liu, Zhiming Li, Jiaxin Liu, Jun Zhao, Tong Liu
{"title":"Modification of black soybean (Glycine max(L.)merr.) residue insoluble dietary fiber with ultrasonic, microwave, high temperature and high-pressure, and extrusion","authors":"Hongyu Lei, Yu Zhang, Tianci Guan, Mengge Liu, Zhiming Li, Jiaxin Liu, Jun Zhao, Tong Liu","doi":"10.1016/j.foodchem.2025.143020","DOIUrl":null,"url":null,"abstract":"Recent studies have emphasized the modification of Insoluble Dietary Fiber (IDF) to enhance its physicochemical properties and functional performance. This study systematically examined the effects of ultrasonic treatment, microwave irradiation, high-temperature and high-pressure processing, and screw extrusion on the physicochemical characteristics, in vitro antioxidant activity, and adsorption capacities of High-Purity Insoluble Dietary Fiber (HPIDF) derived from black bean residues. Although these physical modifications did not alter the functional group composition or crystalline structure of HPIDF, they significantly enhanced its porosity, water-holding capacity (WHC), oil-holding capacity (OHC), and adsorption capacities for glucose, cholesterol, bile salts, and metal ions. Notably, HPIDF treated under high-temperature and high-pressure conditions exhibited the highest adsorption capacities: 9.86 mmol/g for glucose, 8.69 mg/g (pH 2) and 9.69 mg/g (pH 7) for cholesterol, 0.183 g/g (pH 2) and 0.127 g/g (pH 7) for sodium cholate, and 0.699 mg/g (pH 2) and 0.774 mg/g (pH 7) for Cr<sup>2+</sup>.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"84 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2025.143020","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Recent studies have emphasized the modification of Insoluble Dietary Fiber (IDF) to enhance its physicochemical properties and functional performance. This study systematically examined the effects of ultrasonic treatment, microwave irradiation, high-temperature and high-pressure processing, and screw extrusion on the physicochemical characteristics, in vitro antioxidant activity, and adsorption capacities of High-Purity Insoluble Dietary Fiber (HPIDF) derived from black bean residues. Although these physical modifications did not alter the functional group composition or crystalline structure of HPIDF, they significantly enhanced its porosity, water-holding capacity (WHC), oil-holding capacity (OHC), and adsorption capacities for glucose, cholesterol, bile salts, and metal ions. Notably, HPIDF treated under high-temperature and high-pressure conditions exhibited the highest adsorption capacities: 9.86 mmol/g for glucose, 8.69 mg/g (pH 2) and 9.69 mg/g (pH 7) for cholesterol, 0.183 g/g (pH 2) and 0.127 g/g (pH 7) for sodium cholate, and 0.699 mg/g (pH 2) and 0.774 mg/g (pH 7) for Cr2+.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
期刊最新文献
Characterization of metabolite profiles in milk derived exosomes from indicus, crossbred and taurine cows by proton nuclear magnetic resonance analysis Modification of black soybean (Glycine max(L.)merr.) residue insoluble dietary fiber with ultrasonic, microwave, high temperature and high-pressure, and extrusion Enantioselection behaviors and risk assessments of chiral pesticide ethiprole and its chiral metabolite ethiprole amide in five kinds of vegetables Colorimetric and fluorescent probe assisted by smartphone app for monitoring fish freshness Dynamics of chemical profile and microbial community in 3 consecutive years reveal Rhodococcus and Apiotrichum are potential microbes contributing to quality formation of Guang Chenpi
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1