Seismic versus aseismic slip for the 2023 Kahramanmaraş earthquake doublet

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-01-22 DOI:10.1038/s41467-025-56350-7
Rumeng Guo, Xiongwei Tang, Yijun Zhang, Wenting Zhang, Ming Qin, Jianqiao Xu, Jiangcun Zhou, Xuhao Zou, Heping Sun
{"title":"Seismic versus aseismic slip for the 2023 Kahramanmaraş earthquake doublet","authors":"Rumeng Guo, Xiongwei Tang, Yijun Zhang, Wenting Zhang, Ming Qin, Jianqiao Xu, Jiangcun Zhou, Xuhao Zou, Heping Sun","doi":"10.1038/s41467-025-56350-7","DOIUrl":null,"url":null,"abstract":"<p>Interplay between seismic and aseismic slip could shed light on the frictional properties and seismic potential of faults. The well-recorded 2023 Kahramanmaraş earthquake doublet provides an excellent opportunity to understand their partitioning on strike-slip faults. Here, we utilize InSAR and strong motion data to derive the coseismic rupture during the doublet, ~4-month postseismic afterslip, and slip distributions of two Mw&gt;6.0 aftershocks. Our results show that afterslip appears to be complementary to coseismic slip and aftershocks, accounting for ~11.3% of the coseismic moment. Aftershocks mainly fall within the regions of positive Coulomb stresses caused by afterslip and follow a temporal decay similar to that of afterslip, indicating that aftershock production is the failure of small asperities loaded by the afterslip. The early postseismic afterslip is released ~93.7% aseismically and ~6.3% seismically by aftershocks. Our modeling results thus depict a complex fault system with highly variable slip patterns and stresses.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"9 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56350-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Interplay between seismic and aseismic slip could shed light on the frictional properties and seismic potential of faults. The well-recorded 2023 Kahramanmaraş earthquake doublet provides an excellent opportunity to understand their partitioning on strike-slip faults. Here, we utilize InSAR and strong motion data to derive the coseismic rupture during the doublet, ~4-month postseismic afterslip, and slip distributions of two Mw>6.0 aftershocks. Our results show that afterslip appears to be complementary to coseismic slip and aftershocks, accounting for ~11.3% of the coseismic moment. Aftershocks mainly fall within the regions of positive Coulomb stresses caused by afterslip and follow a temporal decay similar to that of afterslip, indicating that aftershock production is the failure of small asperities loaded by the afterslip. The early postseismic afterslip is released ~93.7% aseismically and ~6.3% seismically by aftershocks. Our modeling results thus depict a complex fault system with highly variable slip patterns and stresses.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2023年kahramanmaraki地震双峰的地震与地震滑动
地震和地震滑动之间的相互作用可以揭示断层的摩擦特性和地震潜力。记录良好的2023年kahramanmaraki地震双重波为了解它们在走滑断层上的划分提供了极好的机会。本文利用InSAR和强震数据推导了两次6.0级余震的同震破裂、震后约4个月的余震和余震分布。结果表明,余震与同震滑动和余震是互补的,约占同震力矩的11.3%。余震主要落在余震引起的正库仑应力区域内,并遵循与余震相似的时间衰减,表明余震的产生是余震荷载下小颗粒的破坏。震后早期余震在地震中释放约93.7%,在地震中释放约6.3%。因此,我们的建模结果描绘了一个具有高度可变滑动模式和应力的复杂断层系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Alleviating non-radiative losses in organic solar cells through side-chain regulation of low-bandgap non-fullerene acceptors. Regular-wrinkling tunable MXene lattice for electromagnetic interference shielding Integration of large vision language models for efficient post-disaster damage assessment and reporting Decoupling slab gliding and lattice contraction in Na layered oxides to enable high-voltage Na-ion batteries Structural basis for late maturation steps of mitochondrial respiratory chain complex IV within the human respirasome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1