Centromeric chromatin clearings demarcate the site of kinetochore formation

IF 45.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Pub Date : 2025-01-23 DOI:10.1016/j.cell.2024.12.025
Kathryn Kixmoeller, Ekaterina V. Tarasovetc, Elie Mer, Yi-Wei Chang, Ben E. Black
{"title":"Centromeric chromatin clearings demarcate the site of kinetochore formation","authors":"Kathryn Kixmoeller, Ekaterina V. Tarasovetc, Elie Mer, Yi-Wei Chang, Ben E. Black","doi":"10.1016/j.cell.2024.12.025","DOIUrl":null,"url":null,"abstract":"The centromere is the chromosomal locus that recruits the kinetochore, directing faithful propagation of the genome during cell division. Using cryo-ET on human mitotic chromosomes, we reveal a distinctive architecture at the centromere: clustered 20- to 25-nm nucleosome-associated complexes within chromatin clearings that delineate them from surrounding chromatin. Centromere components CENP-C and CENP-N are each required for the integrity of the complexes, while CENP-C is also required to maintain the chromatin clearing. We find that CENP-C is required in mitosis, not just for kinetochore assembly, likely reflecting its role in organizing the inner kinetochore during chromosome segregation. We further visualize the scaffold of the fibrous corona, a structure amplified at unattached kinetochores, revealing crescent-shaped parallel arrays of fibrils extending >1 μm. Thus, we reveal how the organization of centromeric chromatin creates a clearing at the site of kinetochore formation as well as the nature of kinetochore amplification mediated by corona fibrils.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"4 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2024.12.025","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The centromere is the chromosomal locus that recruits the kinetochore, directing faithful propagation of the genome during cell division. Using cryo-ET on human mitotic chromosomes, we reveal a distinctive architecture at the centromere: clustered 20- to 25-nm nucleosome-associated complexes within chromatin clearings that delineate them from surrounding chromatin. Centromere components CENP-C and CENP-N are each required for the integrity of the complexes, while CENP-C is also required to maintain the chromatin clearing. We find that CENP-C is required in mitosis, not just for kinetochore assembly, likely reflecting its role in organizing the inner kinetochore during chromosome segregation. We further visualize the scaffold of the fibrous corona, a structure amplified at unattached kinetochores, revealing crescent-shaped parallel arrays of fibrils extending >1 μm. Thus, we reveal how the organization of centromeric chromatin creates a clearing at the site of kinetochore formation as well as the nature of kinetochore amplification mediated by corona fibrils.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
着丝粒染色质间隙划分着丝粒形成的位置
着丝粒是招募着丝点的染色体位点,在细胞分裂过程中指导基因组的忠实繁殖。在人类有丝分裂染色体上使用cryo-ET,我们揭示了着丝粒的独特结构:聚集在染色质间隙内的20至25纳米核小体相关复合物,将它们与周围的染色质区分开来。着丝粒组分CENP-C和CENP-N都是复合体完整性所必需的,而CENP-C也需要维持染色质的清除。我们发现CENP-C在有丝分裂中是必需的,而不仅仅是在着丝粒组装中,这可能反映了它在染色体分离过程中组织内部着丝粒的作用。我们进一步可视化了纤维电晕的支架,这是一个在未连接的着丝点处被放大的结构,揭示了延伸1 μm的月牙状平行纤维阵列。因此,我们揭示了着丝粒染色质的组织是如何在着丝粒形成的位置产生一个清除,以及由冠原纤维介导的着丝粒扩增的本质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell
Cell 生物-生化与分子生物学
CiteScore
110.00
自引率
0.80%
发文量
396
审稿时长
2 months
期刊介绍: Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO). The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries. In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.
期刊最新文献
Identification, structure, and agonist design of an androgen membrane receptor Mechanisms of memory-supporting neuronal dynamics in hippocampal area CA3 Ligand interaction landscape of transcription factors and essential enzymes in E. coli Comparative proteomic landscapes elucidate human preimplantation development and failure High-resolution spatially resolved proteomics of complex tissues based on microfluidics and transfer learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1