Quantifying Asymmetric Coordination to Correlate Oxygen Reduction Activity in Fe-Based Single-Atom Catalysts

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-01-23 DOI:10.1002/anie.202423556
Yanhui Cao, Yuan Liu, Xuerong Zheng, Jingxia Yang, Haozhi Wang, Jinfeng Zhang, Xiaopeng Han, Yida Deng, Günther Rupprechter, Wenbin Hu
{"title":"Quantifying Asymmetric Coordination to Correlate Oxygen Reduction Activity in Fe-Based Single-Atom Catalysts","authors":"Yanhui Cao, Yuan Liu, Xuerong Zheng, Jingxia Yang, Haozhi Wang, Jinfeng Zhang, Xiaopeng Han, Yida Deng, Günther Rupprechter, Wenbin Hu","doi":"10.1002/anie.202423556","DOIUrl":null,"url":null,"abstract":"Precisely manipulating asymmetric coordination configurations and examining electronic effects enable to tuning the intrinsic oxygen reduction reaction (ORR) activity of single-atom catalysts (SACs). However, the shortage of a definite relationship between coordination asymmetry and catalytic activity makes the rational design of SACs ambiguous. Here, we propose a concept of “asymmetry degree” to quantify asymmetric coordination configurations and assess the effectiveness of active moieties in Fe-based SACs. A theoretical framework is established where elucidating the volcanic relationship between asymmetry degree and ORR activity by constructing a series of Fe-based SAC models doped with non-metal atoms (B, P, S, Se, and Te) in the first or second coordination sphere, which aligns with Sabatier principle. The predicted ORR activity of Fe asymmetric active moieties is then experimentally validated using asymmetry degree. The combined computational and experimental results suggest that single-atom moiety with a moderate asymmetry degree exhibits optimal intrinsic ORR activity, because breaking the square-planar symmetry of FeN4 can alter the electronic population of the Fe 3d-orbital, thereby optimizing the adsorption-desorption strength of intermediates and thus enhancing the intrinsic ORR activity. This fundamental understanding of catalytic activity from geometric and electronic aspects offers a rational guidance to design high-performance SACs with asymmetric configurations.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"81 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202423556","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Precisely manipulating asymmetric coordination configurations and examining electronic effects enable to tuning the intrinsic oxygen reduction reaction (ORR) activity of single-atom catalysts (SACs). However, the shortage of a definite relationship between coordination asymmetry and catalytic activity makes the rational design of SACs ambiguous. Here, we propose a concept of “asymmetry degree” to quantify asymmetric coordination configurations and assess the effectiveness of active moieties in Fe-based SACs. A theoretical framework is established where elucidating the volcanic relationship between asymmetry degree and ORR activity by constructing a series of Fe-based SAC models doped with non-metal atoms (B, P, S, Se, and Te) in the first or second coordination sphere, which aligns with Sabatier principle. The predicted ORR activity of Fe asymmetric active moieties is then experimentally validated using asymmetry degree. The combined computational and experimental results suggest that single-atom moiety with a moderate asymmetry degree exhibits optimal intrinsic ORR activity, because breaking the square-planar symmetry of FeN4 can alter the electronic population of the Fe 3d-orbital, thereby optimizing the adsorption-desorption strength of intermediates and thus enhancing the intrinsic ORR activity. This fundamental understanding of catalytic activity from geometric and electronic aspects offers a rational guidance to design high-performance SACs with asymmetric configurations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
定量不对称配位与铁基单原子催化剂氧还原活性的关系
精确控制不对称配位构型和检测电子效应,可以调节单原子催化剂的本征氧还原反应活性。然而,由于配位不对称与催化活性之间缺乏明确的关系,使得sac的合理设计模糊不清。在此,我们提出了一个“不对称度”的概念来量化不对称配位构型,并评估铁基SACs中活性基团的有效性。通过构建一系列在第一或第二配位球中掺杂非金属原子(B、P、S、Se和Te)的fe基SAC模型,建立了一个符合Sabatier原理的理论框架,阐明了不对称程度与ORR活性之间的火山关系。然后用不对称度对预测的铁不对称活性部分的ORR活性进行了实验验证。计算和实验结果表明,不对称程度适中的单原子部分表现出最优的本构ORR活性,因为打破FeN4的方平面对称性可以改变Fe 3d轨道的电子居数,从而优化中间体的吸附-解吸强度,从而提高本构ORR活性。从几何和电子方面对催化活性的基本理解为设计具有不对称结构的高性能sac提供了合理的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Self-optimizing Cobalt Tungsten Oxide Electrocatalysts toward Enhanced Oxygen Evolution in Alkaline Media Achieving Room-Temperature Phosphorescence in Solution Phase from Carbon Dots Confined in Nanocrystals Activating Organic Electrode for Zinc Batteries via Adjusting Solvation Structure of Zn Ions Unlocking the Power of Photothermal Agents: A Universal Platform for Smart Immune NIR-Agonists for Precise Cancer Therapy Efficient Infrared-Detecting Organic Semiconductors Featuring a Tetraheterocyclic Core with Reduced Ionization Potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1