Junkai Ren, Jiaolong Liu, Dan Qu, Sikha Sanjay Menon, Bing Wei, Jia Wang
{"title":"Dual-Functional Carbon Dot Films: Blue-Light Filtration and Cyan-Light Conversion for Healthier White Light-Emitting Diodes","authors":"Junkai Ren, Jiaolong Liu, Dan Qu, Sikha Sanjay Menon, Bing Wei, Jia Wang","doi":"10.1021/acs.nanolett.4c06272","DOIUrl":null,"url":null,"abstract":"Blue light emitted by commercial white light-emitting diodes (WLEDs) in the 440–470 nm range poses ocular health risks with prolonged exposure. Effective filtration is crucial for health-conscious lighting, but traditional filters often cause color distortion by completely removing blue emission. In this study, we address this challenge by synthesizing carbon dots (CDs) with strong absorption at 460 nm and bright cyan emission at 485 nm, featuring a photoluminescence quantum yield of 65% and a narrow full width at half-maximum of 30 nm. When embedded in a poly(vinyl alcohol) (PVA) matrix, the CDs@PVA films effectively filter UV-to-blue light, reducing the blue-light ratio from 27.2% to 2.7%. At the same time, the cyan emission preserves the white light’s spectral composition, achieving a color rendering index of 83 ± 5. This dual functionality demonstrates the potential of CDs to enable safer WLEDs that improve both ocular health and lighting quality.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"33 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c06272","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Blue light emitted by commercial white light-emitting diodes (WLEDs) in the 440–470 nm range poses ocular health risks with prolonged exposure. Effective filtration is crucial for health-conscious lighting, but traditional filters often cause color distortion by completely removing blue emission. In this study, we address this challenge by synthesizing carbon dots (CDs) with strong absorption at 460 nm and bright cyan emission at 485 nm, featuring a photoluminescence quantum yield of 65% and a narrow full width at half-maximum of 30 nm. When embedded in a poly(vinyl alcohol) (PVA) matrix, the CDs@PVA films effectively filter UV-to-blue light, reducing the blue-light ratio from 27.2% to 2.7%. At the same time, the cyan emission preserves the white light’s spectral composition, achieving a color rendering index of 83 ± 5. This dual functionality demonstrates the potential of CDs to enable safer WLEDs that improve both ocular health and lighting quality.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.