15N SABRE-SHEATH and NMR/DFT Characterization of Amino-Metronidazole, a Metabolic Product of the Antibiotic and Prospective Hypoxia Contrast Agent Metronidazole.
Ishani M Senanayake, Md Shahabuddin Alam, Mohammad S H Kabir, Anthony F Petrilla, Zahid Siraj, Thomas Theis, Eduard Y Chekmenev, Boyd M Goodson
{"title":"<sup>15</sup>N SABRE-SHEATH and NMR/DFT Characterization of Amino-Metronidazole, a Metabolic Product of the Antibiotic and Prospective Hypoxia Contrast Agent Metronidazole.","authors":"Ishani M Senanayake, Md Shahabuddin Alam, Mohammad S H Kabir, Anthony F Petrilla, Zahid Siraj, Thomas Theis, Eduard Y Chekmenev, Boyd M Goodson","doi":"10.1021/acs.jpcb.4c07877","DOIUrl":null,"url":null,"abstract":"<p><p>The antibiotic metronidazole (MNZ) has gained interest as a potential MRI contrast agent for imaging hypoxia. <sup>15</sup>N-labeled MNZ can be efficiently hyperpolarized via SABRE-SHEATH (Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei), but the envisioned MRI approach requires that MNZ rapidly undergoes structural changes in hypoxic environments with significant <sup>15</sup>N frequency differences manifested in its downstream metabolic products. We have performed NMR studies of the anticipated metabolic product amino-MNZ (despite anticipated stability concerns) accompanied by computational density functional theory (DFT) studies to predict the <sup>15</sup>N chemical shifts of different relevant species. Direct hyperpolarization of sparse naturally abundant <sup>15</sup>N spins in amino-MNZ via SABRE-SHEATH (enhancement up to ∼9400 fold), along with <sup>1</sup>H-decoupled <sup>15</sup>N NMR, allowed comparison with both <sup>15</sup>N<sub>3</sub>-MNZ and naturally abundant MNZ. The results show significant <sup>15</sup>N shift differences that agree with the DFT predictions. Taken together, the results show that it should be possible to readily distinguish the parent MNZ from product amino-MNZ in envisioned MRI approaches at clinically relevant magnetic fields.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"1662-1669"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c07877","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The antibiotic metronidazole (MNZ) has gained interest as a potential MRI contrast agent for imaging hypoxia. 15N-labeled MNZ can be efficiently hyperpolarized via SABRE-SHEATH (Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei), but the envisioned MRI approach requires that MNZ rapidly undergoes structural changes in hypoxic environments with significant 15N frequency differences manifested in its downstream metabolic products. We have performed NMR studies of the anticipated metabolic product amino-MNZ (despite anticipated stability concerns) accompanied by computational density functional theory (DFT) studies to predict the 15N chemical shifts of different relevant species. Direct hyperpolarization of sparse naturally abundant 15N spins in amino-MNZ via SABRE-SHEATH (enhancement up to ∼9400 fold), along with 1H-decoupled 15N NMR, allowed comparison with both 15N3-MNZ and naturally abundant MNZ. The results show significant 15N shift differences that agree with the DFT predictions. Taken together, the results show that it should be possible to readily distinguish the parent MNZ from product amino-MNZ in envisioned MRI approaches at clinically relevant magnetic fields.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.