{"title":"Improved Black Phosphorus Nanocomposite Hydrogel for Bone Defect Repairing: Mechanisms for Advancing Osteogenesis.","authors":"Ailin Wu, Gaoqiang Ma, Yanhua Chen, Houda Gui, Baiyu Sun, Bing Zhang, Yingxue Liu, Sen Zhang, Guixue Lian, Dawei Song, Dongjiao Zhang","doi":"10.1002/adhm.202404934","DOIUrl":null,"url":null,"abstract":"<p><p>Bone defects caused by fractures and diseases often do not heal spontaneously. They require external agents for repair and regeneration. Bone tissue engineering is emerging as a promising alternative to traditional therapies like autografts and allografts. Nanobiomaterials enhance osteoblast resistance to harsh environments by promoting cell differentiation. Black phosphorus (BP), a novel 2D material in biomedicine, displays unique osteogenic and antimicrobial properties. However, BP nanosheets still face clinical limitations like rapid degradation and high-dose cytotoxicity. To address these, the introduction of amino-silicon phthalocyanine (SiPc-NH<sub>2</sub>) is investigated to see if it can enhance BP dispersion, reduce BP oxidation, and improve stability and safety for better osteogenesis and antibacterial effects through noncovalent interactions (van der Waals, π-π stacking and electrostatic interactions). Here, the self-healing hydrogel is successfully designed using a step-by-step co-assembly of BP and SiPc-NH<sub>2.</sub> SiPc-NH<sub>2</sub> as a \"structural stabilizer\" of BP nanosheets reconstructed well-dispersed BP-SiPc-NH<sub>2</sub> nanosheets, which improves the biocompatibility of BP, reduces oxidation and enhances photothermal conversion, guaranteeing osteogenic and antimicrobial properties. Furthermore, findings show BP-SiPc-NH<sub>2</sub>-induced mitochondrial changes support osteogenesis by regulating the crosstalk between Hippo and Wnt signaling pathways-mediated mitochondrial homeostasis, and boosting cellular bioenergetics. Overall, this mitochondrial morphology-based BP-SiPc-NH<sub>2</sub> strategy holds great promise for bone repair applications.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2404934"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202404934","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bone defects caused by fractures and diseases often do not heal spontaneously. They require external agents for repair and regeneration. Bone tissue engineering is emerging as a promising alternative to traditional therapies like autografts and allografts. Nanobiomaterials enhance osteoblast resistance to harsh environments by promoting cell differentiation. Black phosphorus (BP), a novel 2D material in biomedicine, displays unique osteogenic and antimicrobial properties. However, BP nanosheets still face clinical limitations like rapid degradation and high-dose cytotoxicity. To address these, the introduction of amino-silicon phthalocyanine (SiPc-NH2) is investigated to see if it can enhance BP dispersion, reduce BP oxidation, and improve stability and safety for better osteogenesis and antibacterial effects through noncovalent interactions (van der Waals, π-π stacking and electrostatic interactions). Here, the self-healing hydrogel is successfully designed using a step-by-step co-assembly of BP and SiPc-NH2. SiPc-NH2 as a "structural stabilizer" of BP nanosheets reconstructed well-dispersed BP-SiPc-NH2 nanosheets, which improves the biocompatibility of BP, reduces oxidation and enhances photothermal conversion, guaranteeing osteogenic and antimicrobial properties. Furthermore, findings show BP-SiPc-NH2-induced mitochondrial changes support osteogenesis by regulating the crosstalk between Hippo and Wnt signaling pathways-mediated mitochondrial homeostasis, and boosting cellular bioenergetics. Overall, this mitochondrial morphology-based BP-SiPc-NH2 strategy holds great promise for bone repair applications.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.