Accelerating Fock Build via Hybrid Analytical-Numerical Integration.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry A Pub Date : 2025-01-23 DOI:10.1021/acs.jpca.4c07454
Yong Zhang, Rongding Lei, Bingbing Suo, Wenjian Liu
{"title":"Accelerating Fock Build via Hybrid Analytical-Numerical Integration.","authors":"Yong Zhang, Rongding Lei, Bingbing Suo, Wenjian Liu","doi":"10.1021/acs.jpca.4c07454","DOIUrl":null,"url":null,"abstract":"<p><p>A hybrid analytical-numerical integration scheme is introduced to accelerate the Fock build in self-consistent field (SCF) and time-dependent density functional theory (TDDFT) calculations. To evaluate the Coulomb matrix <b>J</b>[<b>D</b>], the density matrix <b>D</b> is first decomposed into two parts, the superposition of atomic density matrices <b>D</b><sub>⊕</sub><sup><i>A</i></sup> and the rest <b>D</b><sup><i>R</i></sup> = <b>D</b>-<b>D</b><sub>⊕</sub><sup><i>A</i></sup>. While <b>J</b>[<b>D</b><sub>⊕</sub><sup><i>A</i></sup>] is evaluated analytically, <b>J</b>[<b>D</b><sup><i>R</i></sup>] is evaluated fully numerically [with the multipole expansion of the Coulomb potential (MECP)] during the SCF iterations. Upon convergence, <b>D</b><sup><i>R</i></sup> is further split into those of near (<b>D</b><sup><i>RC</i></sup>) and distant (<b>D</b><sup><i>RL</i></sup>) atomic orbital (AO) pairs, such that <b>J</b>[<b>D</b><sup><i>RC</i></sup>] and <b>J</b>[<b>D</b><sup><i>RL</i></sup>] are evaluated seminumerically and fully numerically (with MECP). Such a hybrid <b>J</b>-build is dubbed \"analytic-MECP\" (aMECP). Likewise, the analytic evaluation of <b>K</b>[<b>D</b><sub>⊕</sub><sup><i>A</i></sup>] and seminumerical evaluation of <b>K</b>[<b>D</b><sup><i>R</i></sup>] are also invoked for the construction of the exchange matrix <b>K</b>[<b>D</b>] during the SCF iterations. The chain-of-spheres (COSX) algorithm [Chem. Phys. 356, 98 (2009]) is employed for <b>K</b>[<b>D</b><sup><i>R</i></sup>] but with a revised construction of the S-junctions for overlap AO pairs. To distinguish from the original COSX algorithm (which does not involve the partition of the density matrix <b>D</b>), we denote the presently revised variant as COSx. Upon convergence, <b>D</b><sup><i>R</i></sup> is further split into those of near (<b>D</b><sup><i>RC</i></sup>) and distant (<b>D</b><sup><i>RL</i></sup>) AO pairs followed by a rescaling, leading to <math><msup><mover><mi>D</mi><mo>~</mo></mover><mrow><mi>R</mi><mi>C</mi></mrow></msup></math> and <math><msup><mover><mi>D</mi><mo>~</mo></mover><mrow><mi>R</mi><mi>L</mi></mrow></msup></math>, respectively. <math><mi>K</mi><mrow><mo>[</mo><msup><mover><mi>D</mi><mo>~</mo></mover><mrow><mi>R</mi><mi>C</mi></mrow></msup><mo>]</mo></mrow></math> and <math><mi>K</mi><mrow><mo>[</mo><msup><mover><mi>D</mi><mo>~</mo></mover><mrow><mi>R</mi><mi>L</mi></mrow></msup><mo>]</mo></mrow></math> are then evaluated analytically and seminumerically (with COSx), respectively. Such a hybrid <b>K</b>-build is dubbed \"analytic-COSx\" (aCOSx). Extensive numerical experimentations reveal that the combination of aMECP and aCOSx is highly accurate for ground state SCF calculations (<math><mo><</mo><mi>μ</mi><msub><mi>E</mi><mi>h</mi></msub><mo>/</mo><mtext>atom</mtext></math> error in energy) and is particularly efficient for calculations of large molecules with extended basis sets. As for TDDFT excitation energies, a medium grid for MECP and a coarse grid for COSx are already sufficient.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c07454","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A hybrid analytical-numerical integration scheme is introduced to accelerate the Fock build in self-consistent field (SCF) and time-dependent density functional theory (TDDFT) calculations. To evaluate the Coulomb matrix J[D], the density matrix D is first decomposed into two parts, the superposition of atomic density matrices DA and the rest DR = D-DA. While J[DA] is evaluated analytically, J[DR] is evaluated fully numerically [with the multipole expansion of the Coulomb potential (MECP)] during the SCF iterations. Upon convergence, DR is further split into those of near (DRC) and distant (DRL) atomic orbital (AO) pairs, such that J[DRC] and J[DRL] are evaluated seminumerically and fully numerically (with MECP). Such a hybrid J-build is dubbed "analytic-MECP" (aMECP). Likewise, the analytic evaluation of K[DA] and seminumerical evaluation of K[DR] are also invoked for the construction of the exchange matrix K[D] during the SCF iterations. The chain-of-spheres (COSX) algorithm [Chem. Phys. 356, 98 (2009]) is employed for K[DR] but with a revised construction of the S-junctions for overlap AO pairs. To distinguish from the original COSX algorithm (which does not involve the partition of the density matrix D), we denote the presently revised variant as COSx. Upon convergence, DR is further split into those of near (DRC) and distant (DRL) AO pairs followed by a rescaling, leading to D~RC and D~RL, respectively. K[D~RC] and K[D~RL] are then evaluated analytically and seminumerically (with COSx), respectively. Such a hybrid K-build is dubbed "analytic-COSx" (aCOSx). Extensive numerical experimentations reveal that the combination of aMECP and aCOSx is highly accurate for ground state SCF calculations (<μEh/atom error in energy) and is particularly efficient for calculations of large molecules with extended basis sets. As for TDDFT excitation energies, a medium grid for MECP and a coarse grid for COSx are already sufficient.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Bioaerosol Characterization with Vibrational Spectroscopy: Overcoming Fluorescence with Photothermal Infrared (PTIR) Spectroscopy. Density Functional Theory Study on Reconstruction and Reversible Transformation Processes of the ZZ57 Edge Structure in Carbon Materials: Effect of Na, K, and Ca. Infrared Ion Spectroscopy of Gaseous [Cu(2,2'-Bipyridine)3]2+: Investigation of Jahn-Teller Elongation Versus Compression. Resonances in Low-Energy Electron Collisions with Salicylic Acid. Study on Influence of Microwave Electric Field Direction on Evaporation Based on Molecular Dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1