CD4-Derived Double-Negative T Cells Ameliorate Alzheimer's Disease-Like Phenotypes in the 5×FAD Mouse Model

IF 4.8 1区 医学 Q1 NEUROSCIENCES CNS Neuroscience & Therapeutics Pub Date : 2025-01-23 DOI:10.1111/cns.70187
Yuanzi Xie, Jing Liu, Zongren Hou, Huan Wang, Kailun Liu, Xiaowei Chen, Zhen Fan, Da Li, Can Li, Yuhualei Pan, Yushang Zhao, Yanbing Zhu, Baoyang Hu
{"title":"CD4-Derived Double-Negative T Cells Ameliorate Alzheimer's Disease-Like Phenotypes in the 5×FAD Mouse Model","authors":"Yuanzi Xie,&nbsp;Jing Liu,&nbsp;Zongren Hou,&nbsp;Huan Wang,&nbsp;Kailun Liu,&nbsp;Xiaowei Chen,&nbsp;Zhen Fan,&nbsp;Da Li,&nbsp;Can Li,&nbsp;Yuhualei Pan,&nbsp;Yushang Zhao,&nbsp;Yanbing Zhu,&nbsp;Baoyang Hu","doi":"10.1111/cns.70187","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Alzheimer's disease (AD) is a debilitating neurodegenerative disorder that is difficult to predict and is typically diagnosed only after symptoms manifest. Recently, CD4<sup>+</sup> T cell-derived double-negative T (DNT) cells have shown strong immuno-regulatory properties in both in vitro and in vivo neuronal inflammation studies. However, the effectiveness of DNT cells in treating on AD are not yet fully understood.</p>\n </section>\n \n <section>\n \n <h3> Objective</h3>\n \n <p>This study's aims were three-fold, to (1) evaluate the efficacy of CD4<sup>+</sup> T cell-derived DNT cells treatment on AD mice, (2) understand how DNT treatment make changes in different cell types of 5FAD mice, (3) identify the side effects of DNT treatment.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We performed tail vein injection of transformed and amplified CD4<sup>+</sup> T cell-derived DNT cells into 5 × FAD mice, while using WT mice and saline injection 5FAD mice as controls. DNT suspensions or NaCl alone were administered to 5 × FAD mice at the 6 months of age. For intravenous injection (<i>n</i> = 10 for both DNT and control injections), 5 × FAD mice were injected with a total of 5 × 10<sup>6</sup> DNT cells suspended in 200 μL of 0.9% NaCl or 0.9% NaCl alone via the lateral tail vein. Behavioral tests and pathology tests were carried out 30 days after cell transplantation.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Through qualitative analysis, we identified 6 main themes. DNT from young wild-type mice enhance the capability of spatial learning and memory in AD mice. DNT cell treatment rejuvenates the microglial function. DNT cell treatment improves the state of oligodendrocytes. DNT cell treatment finetunes the activation of the immune system. DNT cell treatment improves the synaptic plasticity and increases the complexity of neurons. DNT cell treatment reduces the density of amyloid Beta plaques deposition in the cortex and hippocampus of 5 × FAD mice.</p>\n </section>\n \n <section>\n \n <h3> Discussion</h3>\n \n <p>The findings from this study reveal that DNT treatment improved spatial memory and learning abilities, reduced Aβ deposition, and enhanced synaptic plasticity, contrasting with previous reports on thymus-derived DNT cells. Additionally, CD4<sup>+</sup> T cell-derived DNT therapy exhibited anti-inflammatory effects and modulated microglial function, promoting a neuroprotective environment. Notably, DNT treatment also reduced tau pathology by decreasing levels of abnormally phosphorylated tau. These findings suggest that CD4<sup>+</sup> T cell-derived DNT cells hold therapeutic potential for AD, effectively targeting both Aβ and tau pathologies.</p>\n </section>\n </div>","PeriodicalId":154,"journal":{"name":"CNS Neuroscience & Therapeutics","volume":"31 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754964/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS Neuroscience & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cns.70187","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Alzheimer's disease (AD) is a debilitating neurodegenerative disorder that is difficult to predict and is typically diagnosed only after symptoms manifest. Recently, CD4+ T cell-derived double-negative T (DNT) cells have shown strong immuno-regulatory properties in both in vitro and in vivo neuronal inflammation studies. However, the effectiveness of DNT cells in treating on AD are not yet fully understood.

Objective

This study's aims were three-fold, to (1) evaluate the efficacy of CD4+ T cell-derived DNT cells treatment on AD mice, (2) understand how DNT treatment make changes in different cell types of 5FAD mice, (3) identify the side effects of DNT treatment.

Methods

We performed tail vein injection of transformed and amplified CD4+ T cell-derived DNT cells into 5 × FAD mice, while using WT mice and saline injection 5FAD mice as controls. DNT suspensions or NaCl alone were administered to 5 × FAD mice at the 6 months of age. For intravenous injection (n = 10 for both DNT and control injections), 5 × FAD mice were injected with a total of 5 × 106 DNT cells suspended in 200 μL of 0.9% NaCl or 0.9% NaCl alone via the lateral tail vein. Behavioral tests and pathology tests were carried out 30 days after cell transplantation.

Results

Through qualitative analysis, we identified 6 main themes. DNT from young wild-type mice enhance the capability of spatial learning and memory in AD mice. DNT cell treatment rejuvenates the microglial function. DNT cell treatment improves the state of oligodendrocytes. DNT cell treatment finetunes the activation of the immune system. DNT cell treatment improves the synaptic plasticity and increases the complexity of neurons. DNT cell treatment reduces the density of amyloid Beta plaques deposition in the cortex and hippocampus of 5 × FAD mice.

Discussion

The findings from this study reveal that DNT treatment improved spatial memory and learning abilities, reduced Aβ deposition, and enhanced synaptic plasticity, contrasting with previous reports on thymus-derived DNT cells. Additionally, CD4+ T cell-derived DNT therapy exhibited anti-inflammatory effects and modulated microglial function, promoting a neuroprotective environment. Notably, DNT treatment also reduced tau pathology by decreasing levels of abnormally phosphorylated tau. These findings suggest that CD4+ T cell-derived DNT cells hold therapeutic potential for AD, effectively targeting both Aβ and tau pathologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CNS Neuroscience & Therapeutics
CNS Neuroscience & Therapeutics 医学-神经科学
CiteScore
7.30
自引率
12.70%
发文量
240
审稿时长
2 months
期刊介绍: CNS Neuroscience & Therapeutics provides a medium for rapid publication of original clinical, experimental, and translational research papers, timely reviews and reports of novel findings of therapeutic relevance to the central nervous system, as well as papers related to clinical pharmacology, drug development and novel methodologies for drug evaluation. The journal focuses on neurological and psychiatric diseases such as stroke, Parkinson’s disease, Alzheimer’s disease, depression, schizophrenia, epilepsy, and drug abuse.
期刊最新文献
Melatonin Regulates Glymphatic Function to Affect Cognitive Deficits, Behavioral Issues, and Blood–Brain Barrier Damage in Mice After Intracerebral Hemorrhage: Potential Links to Circadian Rhythms Targeting LncRNA-Vof16: A Novel Therapeutic Strategy for Neuropathic Pain Relief Xiao-Chai-Hu-Tang Ameliorates Depressive Symptoms via Modulating Neuro-Endocrine Network in Chronic Unpredictable Mild Stress-Induced Mice Function-Specific Localization in the Supplementary Motor Area: A Potential Effective Target for Tourette Syndrome Metrnl/C-KIT Axis Attenuates Early Brain Injury Following Subarachnoid Hemorrhage by Inhibiting Neuronal Ferroptosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1