{"title":"Optimizing Biomimetic 3D Disordered Fibrous Network Structures for Lightweight, High-Strength Materials via Deep Reinforcement Learning.","authors":"Yunhao Yang, Runnan Bai, Wenli Gao, Leitao Cao, Jing Ren, Zhengzhong Shao, Shengjie Ling","doi":"10.1002/advs.202413293","DOIUrl":null,"url":null,"abstract":"<p><p>3D disordered fibrous network structures (3D-DFNS), such as cytoskeletons, collagen matrices, and spider webs, exhibit remarkable material efficiency, lightweight properties, and mechanical adaptability. Despite their widespread in nature, the integration into engineered materials is limited by the lack of study on their complex architectures. This study addresses the challenge by investigating the structure-property relationships and stability of biomimetic 3D-DFNS using large datasets generated through procedural modeling, coarse-grained molecular dynamics simulations, and machine learning. Based on these datasets, a network deep reinforcement learning (N-DRL) framework is developed to optimize its stability, effectively balancing weight reduction with the maintenance of structural integrity. The results reveal a pronounced correlation between the total fiber length in 3D-DFNS and its mechanical properties, where longer fibers enhance stress distribution and stability. Additionally, fiber orientation is also considered as a potential factor influencing stress growth values. Furthermore, the N-DRL model demonstrates superior performance compared to traditional approaches in optimizing network stability while minimizing mass and computational cost. Structural integrity is significantly improved through the addition of triple junctions and the reduction of higher-order nodes. In summary, this study leverages machine learning to optimize biomimetic 3D-DFNS, providing novel insights into the design of lightweight, high-strength materials.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2413293"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202413293","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
3D disordered fibrous network structures (3D-DFNS), such as cytoskeletons, collagen matrices, and spider webs, exhibit remarkable material efficiency, lightweight properties, and mechanical adaptability. Despite their widespread in nature, the integration into engineered materials is limited by the lack of study on their complex architectures. This study addresses the challenge by investigating the structure-property relationships and stability of biomimetic 3D-DFNS using large datasets generated through procedural modeling, coarse-grained molecular dynamics simulations, and machine learning. Based on these datasets, a network deep reinforcement learning (N-DRL) framework is developed to optimize its stability, effectively balancing weight reduction with the maintenance of structural integrity. The results reveal a pronounced correlation between the total fiber length in 3D-DFNS and its mechanical properties, where longer fibers enhance stress distribution and stability. Additionally, fiber orientation is also considered as a potential factor influencing stress growth values. Furthermore, the N-DRL model demonstrates superior performance compared to traditional approaches in optimizing network stability while minimizing mass and computational cost. Structural integrity is significantly improved through the addition of triple junctions and the reduction of higher-order nodes. In summary, this study leverages machine learning to optimize biomimetic 3D-DFNS, providing novel insights into the design of lightweight, high-strength materials.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.