Assessing spatial sequencing and imaging approaches to capture the molecular and pathological heterogeneity of archived cancer tissues

IF 5.6 2区 医学 Q1 ONCOLOGY The Journal of Pathology Pub Date : 2025-01-23 DOI:10.1002/path.6383
Tuan Vo, P Prakrithi, Kahli Jones, Sohye Yoon, Pui Yeng Lam, Yung-Ching Kao, Ning Ma, Samuel X Tan, Xinnan Jin, Chenhao Zhou, Joanna Crawford, Shaun Walters, Ishaan Gupta, Peter H Soyer, Kiarash Khosrotehrani, Mitchell S Stark, Quan Nguyen
{"title":"Assessing spatial sequencing and imaging approaches to capture the molecular and pathological heterogeneity of archived cancer tissues","authors":"Tuan Vo,&nbsp;P Prakrithi,&nbsp;Kahli Jones,&nbsp;Sohye Yoon,&nbsp;Pui Yeng Lam,&nbsp;Yung-Ching Kao,&nbsp;Ning Ma,&nbsp;Samuel X Tan,&nbsp;Xinnan Jin,&nbsp;Chenhao Zhou,&nbsp;Joanna Crawford,&nbsp;Shaun Walters,&nbsp;Ishaan Gupta,&nbsp;Peter H Soyer,&nbsp;Kiarash Khosrotehrani,&nbsp;Mitchell S Stark,&nbsp;Quan Nguyen","doi":"10.1002/path.6383","DOIUrl":null,"url":null,"abstract":"<p>Spatial transcriptomics (ST) offers enormous potential to decipher the biological and pathological heterogeneity in precious archival cancer tissues. Traditionally, these tissues have rarely been used and only examined at a low throughput, most commonly by histopathological staining. ST adds thousands of times as many molecular features to histopathological images, but critical technical issues and limitations require more assessment of how ST performs on fixed archival tissues. In this work, we addressed this in a cancer-heterogeneity pipeline, starting with an exploration of the whole transcriptome by two sequencing-based ST protocols capable of measuring coding and non-coding RNAs. We optimised the two protocols to work with challenging formalin-fixed paraffin-embedded (FFPE) tissues, derived from skin. We then assessed alternative imaging methods, including multiplex RNAScope single-molecule imaging and multiplex protein imaging (CODEX). We evaluated the methods’ performance for tissues stored from 4 to 14 years ago, covering a range of RNA qualities, allowing us to assess variation. In addition to technical performance metrics, we determined the ability of these methods to quantify tumour heterogeneity. We integrated gene expression profiles with pathological information, charting a new molecular landscape on the pathologically defined tissue regions. Together, this work provides important and comprehensive experimental technical perspectives to consider the applications of ST in deciphering the cancer heterogeneity in archived tissues. © 2025 The Author(s). <i>The Journal of Pathology</i> published by John Wiley &amp; Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.</p>","PeriodicalId":232,"journal":{"name":"The Journal of Pathology","volume":"265 3","pages":"274-288"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/path.6383","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/path.6383","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial transcriptomics (ST) offers enormous potential to decipher the biological and pathological heterogeneity in precious archival cancer tissues. Traditionally, these tissues have rarely been used and only examined at a low throughput, most commonly by histopathological staining. ST adds thousands of times as many molecular features to histopathological images, but critical technical issues and limitations require more assessment of how ST performs on fixed archival tissues. In this work, we addressed this in a cancer-heterogeneity pipeline, starting with an exploration of the whole transcriptome by two sequencing-based ST protocols capable of measuring coding and non-coding RNAs. We optimised the two protocols to work with challenging formalin-fixed paraffin-embedded (FFPE) tissues, derived from skin. We then assessed alternative imaging methods, including multiplex RNAScope single-molecule imaging and multiplex protein imaging (CODEX). We evaluated the methods’ performance for tissues stored from 4 to 14 years ago, covering a range of RNA qualities, allowing us to assess variation. In addition to technical performance metrics, we determined the ability of these methods to quantify tumour heterogeneity. We integrated gene expression profiles with pathological information, charting a new molecular landscape on the pathologically defined tissue regions. Together, this work provides important and comprehensive experimental technical perspectives to consider the applications of ST in deciphering the cancer heterogeneity in archived tissues. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Pathology
The Journal of Pathology 医学-病理学
CiteScore
14.10
自引率
1.40%
发文量
144
审稿时长
3-8 weeks
期刊介绍: The Journal of Pathology aims to serve as a translational bridge between basic biomedical science and clinical medicine with particular emphasis on, but not restricted to, tissue based studies. The main interests of the Journal lie in publishing studies that further our understanding the pathophysiological and pathogenetic mechanisms of human disease. The Journal of Pathology welcomes investigative studies on human tissues, in vitro and in vivo experimental studies, and investigations based on animal models with a clear relevance to human disease, including transgenic systems. As well as original research papers, the Journal seeks to provide rapid publication in a variety of other formats, including editorials, review articles, commentaries and perspectives and other features, both contributed and solicited.
期刊最新文献
Comprehensive characterization of micropapillary colorectal adenocarcinoma. Clonal dynamics of chronic myelomonocytic leukemia progression: paired-sample comparison. Unveiling the intriguing relationship: oncogenic KRAS, morphological shifts, and mutational complexity in pancreatic mucinous cystic neoplasms. Issue Information Downregulation of AATK enhances susceptibility to ferroptosis by promoting endosome recycling in gefitinib-resistant lung cancer cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1