Physico-chemical properties and substrate specificity of α-(1→3)-d-glucan degrading recombinant mutanase from Trichoderma harzianum expressed in Penicillium verruculosum.

IF 3.9 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied and Environmental Microbiology Pub Date : 2025-01-23 DOI:10.1128/aem.00226-24
Olga A Sinitsyna, Pavel V Volkov, Ivan N Zorov, Alexandra M Rozhkova, Oleg V Emshanov, Yulia M Romanova, Bozhena S Komarova, Natalia S Novikova, Nikolay E Nifantiev, Arkady P Sinitsyn
{"title":"Physico-chemical properties and substrate specificity of α-(1→3)-d-glucan degrading recombinant mutanase from <i>Trichoderma harzianum</i> expressed in <i>Penicillium verruculosum</i>.","authors":"Olga A Sinitsyna, Pavel V Volkov, Ivan N Zorov, Alexandra M Rozhkova, Oleg V Emshanov, Yulia M Romanova, Bozhena S Komarova, Natalia S Novikova, Nikolay E Nifantiev, Arkady P Sinitsyn","doi":"10.1128/aem.00226-24","DOIUrl":null,"url":null,"abstract":"<p><p>The gene <i>mutAW</i> encoding <i>Trichoderma harzianum</i> fungus mutanase (MutA, GH71 family, α-1,3-glucanase, EC 3.2.1.59) was cloned and heterologously expressed by the highly productive <i>Penicillium verruculosum</i> fungus. <i>P. verruculosum MutA</i> strain secreted crude enzyme preparations with the recombinant MutA content of 40% of the total secreted protein, and the specific activity increased 150 folds compared to that of enzyme preparation obtained by the host strain. Homogeneous MutA had molecular mass of 70 kDa and displayed maximum of the activity on mutan at pH 5.0 and 50°C, with <i>K</i><sub>m</sub> and <i>k</i><sub>cat</sub> being 1.0 g/L and 30 s<sup>-1</sup>, respectively. At 40-50°C, the MutA was stable for at least 3 h. Glucose was the main product of long-term mutan hydrolysis. HPLC analysis of hydrolysis product of oligo-α-(1→3)-D-glucosides bearing UV-detectable <i>N</i>-<i>trans</i>-cinnamoyl residue in the aglycon clearly indicated that MutA has an endo-processive hydrolytic mode of action. It was demonstrated that MutA can destroy the polysaccharide matrix of both gram-positive and gram-negative pathogenic bacteria biofilms.</p><p><strong>Importance: </strong>The manuscript describes the properties of a novel recombinant GH71 mutanase Mut A from <i>Trichoderma harzianum</i>. Gene <i>mutAW</i> encoding mutanase was heterologously expressed in the host strain <i>Penicillium verruculosum</i> B1-537 (ΔniaD). The recipient strain has a high secretory ability and allowed to obtain preparations containing the target recombinant enzyme up to 80% of the total protein pool. MutA exhibited a high activity against mutan and negligible or zero activity toward other types of glucans including α-(1→4)-, β-(1→3)-, β-(1→4)-, and β-(1→6)-glucans. By using a series of synthetic oligo-α-(1→3)-D-glucosides, we demonstrated that MutA is an endo-processive enzyme, which hydrolyzes the internal glucosidic bonds and releases glucose from the reducing end sliding into the non-reducing end. MutA recognizes tetrasaccharide as a minimal substrate and hydrolyzes it to trisaccharide and glucose. The effectiveness of the use of MutA for the destruction of clinical isolates of gram-positive and gram-negative bacteria is also described.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0022624"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.00226-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The gene mutAW encoding Trichoderma harzianum fungus mutanase (MutA, GH71 family, α-1,3-glucanase, EC 3.2.1.59) was cloned and heterologously expressed by the highly productive Penicillium verruculosum fungus. P. verruculosum MutA strain secreted crude enzyme preparations with the recombinant MutA content of 40% of the total secreted protein, and the specific activity increased 150 folds compared to that of enzyme preparation obtained by the host strain. Homogeneous MutA had molecular mass of 70 kDa and displayed maximum of the activity on mutan at pH 5.0 and 50°C, with Km and kcat being 1.0 g/L and 30 s-1, respectively. At 40-50°C, the MutA was stable for at least 3 h. Glucose was the main product of long-term mutan hydrolysis. HPLC analysis of hydrolysis product of oligo-α-(1→3)-D-glucosides bearing UV-detectable N-trans-cinnamoyl residue in the aglycon clearly indicated that MutA has an endo-processive hydrolytic mode of action. It was demonstrated that MutA can destroy the polysaccharide matrix of both gram-positive and gram-negative pathogenic bacteria biofilms.

Importance: The manuscript describes the properties of a novel recombinant GH71 mutanase Mut A from Trichoderma harzianum. Gene mutAW encoding mutanase was heterologously expressed in the host strain Penicillium verruculosum B1-537 (ΔniaD). The recipient strain has a high secretory ability and allowed to obtain preparations containing the target recombinant enzyme up to 80% of the total protein pool. MutA exhibited a high activity against mutan and negligible or zero activity toward other types of glucans including α-(1→4)-, β-(1→3)-, β-(1→4)-, and β-(1→6)-glucans. By using a series of synthetic oligo-α-(1→3)-D-glucosides, we demonstrated that MutA is an endo-processive enzyme, which hydrolyzes the internal glucosidic bonds and releases glucose from the reducing end sliding into the non-reducing end. MutA recognizes tetrasaccharide as a minimal substrate and hydrolyzes it to trisaccharide and glucose. The effectiveness of the use of MutA for the destruction of clinical isolates of gram-positive and gram-negative bacteria is also described.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied and Environmental Microbiology
Applied and Environmental Microbiology 生物-生物工程与应用微生物
CiteScore
7.70
自引率
2.30%
发文量
730
审稿时长
1.9 months
期刊介绍: Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.
期刊最新文献
Inactivation of deposited bioaerosols on food contact surfaces with UV-C light emitting diode devices. Variability in cadmium tolerance of closely related Listeria monocytogenes isolates originating from dairy processing environments. Postdocs should receive relocation benefits from the universities that hire them. Systematic analysis of the glucose-PTS in Streptococcus sanguinis highlighted its importance in central metabolism and bacterial fitness. Papain expression in the Escherichia coli cytoplasm by T7-promoter engineering and co-expression with human protein disulfide isomerase (PDI) and thiol peroxidase (GPx7) genes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1