High-dimensional multiple imputation (HDMI) for partially observed confounders including natural language processing-derived auxiliary covariates.

IF 5 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH American journal of epidemiology Pub Date : 2025-01-22 DOI:10.1093/aje/kwaf017
Janick Weberpals, Pamela A Shaw, Kueiyu Joshua Lin, Richard Wyss, Joseph M Plasek, Li Zhou, Kerry Ngan, Thomas DeRamus, Sudha R Raman, Bradley G Hammill, Hana Lee, Sengwee Toh, John G Connolly, Kimberly J Dandreo, Fang Tian, Wei Liu, Jie Li, José J Hernández-Muñoz, Sebastian Schneeweiss, Rishi J Desai
{"title":"High-dimensional multiple imputation (HDMI) for partially observed confounders including natural language processing-derived auxiliary covariates.","authors":"Janick Weberpals, Pamela A Shaw, Kueiyu Joshua Lin, Richard Wyss, Joseph M Plasek, Li Zhou, Kerry Ngan, Thomas DeRamus, Sudha R Raman, Bradley G Hammill, Hana Lee, Sengwee Toh, John G Connolly, Kimberly J Dandreo, Fang Tian, Wei Liu, Jie Li, José J Hernández-Muñoz, Sebastian Schneeweiss, Rishi J Desai","doi":"10.1093/aje/kwaf017","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple imputation (MI) models can be improved with auxiliary covariates (AC), but their performance in high-dimensional data remains unclear. We aimed to develop and compare high-dimensional MI (HDMI) methods using structured and natural language processing (NLP)-derived AC in studies with partially observed confounders. We conducted a plasmode simulation with acute kidney injury as outcome and simulated 100 cohorts with a null treatment effect, incorporating creatinine labs, atrial fibrillation (AFib), and other investigator-derived confounders in the outcome generation. Missingness was imposed on creatinine based on creatinine itself and AFib. Different HDMI candidate AC were created using structured and NLP-derived features and we mimicked scenarios where AFib was unobserved by omitting it from all analyses. Using LASSO, we selected HDMI covariates for MI and propensity score models. The treatment effect was estimated after propensity score matching in MI datasets, and HDMI methods were compared to baseline imputation and complete case analysis. HDMI using claims data showed the lowest bias (0.072). Combining claims and sentence embeddings led to an improvement in the efficiency with a root-mean-squared-error of 0.173 and 94% coverage. NLP-derived AC alone did not outperform baseline MI. HDMI approaches may decrease bias in studies where confounder missingness depends on unobserved factors.</p>","PeriodicalId":7472,"journal":{"name":"American journal of epidemiology","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/aje/kwaf017","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple imputation (MI) models can be improved with auxiliary covariates (AC), but their performance in high-dimensional data remains unclear. We aimed to develop and compare high-dimensional MI (HDMI) methods using structured and natural language processing (NLP)-derived AC in studies with partially observed confounders. We conducted a plasmode simulation with acute kidney injury as outcome and simulated 100 cohorts with a null treatment effect, incorporating creatinine labs, atrial fibrillation (AFib), and other investigator-derived confounders in the outcome generation. Missingness was imposed on creatinine based on creatinine itself and AFib. Different HDMI candidate AC were created using structured and NLP-derived features and we mimicked scenarios where AFib was unobserved by omitting it from all analyses. Using LASSO, we selected HDMI covariates for MI and propensity score models. The treatment effect was estimated after propensity score matching in MI datasets, and HDMI methods were compared to baseline imputation and complete case analysis. HDMI using claims data showed the lowest bias (0.072). Combining claims and sentence embeddings led to an improvement in the efficiency with a root-mean-squared-error of 0.173 and 94% coverage. NLP-derived AC alone did not outperform baseline MI. HDMI approaches may decrease bias in studies where confounder missingness depends on unobserved factors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
American journal of epidemiology
American journal of epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
7.40
自引率
4.00%
发文量
221
审稿时长
3-6 weeks
期刊介绍: The American Journal of Epidemiology is the oldest and one of the premier epidemiologic journals devoted to the publication of empirical research findings, opinion pieces, and methodological developments in the field of epidemiologic research. It is a peer-reviewed journal aimed at both fellow epidemiologists and those who use epidemiologic data, including public health workers and clinicians.
期刊最新文献
High-dimensional multiple imputation (HDMI) for partially observed confounders including natural language processing-derived auxiliary covariates. Population Attributable Fraction of Non-Vaccination and Under-Vaccination of COVID-19 Due to Vaccine Hesitancy, 2022. Revealing trends in measles immunity during periods of varying measles circulation in Madagascar. Correction to: "Canonical causal diagrams to guide the treatment of missing data in epidemiologic studies". Fostering public health and academic partnerships during and beyond a public health emergency: lessons learned from COVID-19.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1