Challenges and Insights in Absolute Quantification of Recombinant Therapeutic Antibodies by Mass Spectrometry: An Introductory Review.

IF 3 Q3 IMMUNOLOGY Antibodies Pub Date : 2025-01-07 DOI:10.3390/antib14010003
Sarah Döring, Michael G Weller, Yvonne Reinders, Zoltán Konthur, Carsten Jaeger
{"title":"Challenges and Insights in Absolute Quantification of Recombinant Therapeutic Antibodies by Mass Spectrometry: An Introductory Review.","authors":"Sarah Döring, Michael G Weller, Yvonne Reinders, Zoltán Konthur, Carsten Jaeger","doi":"10.3390/antib14010003","DOIUrl":null,"url":null,"abstract":"<p><p>This review describes mass spectrometry (MS)-based approaches for the absolute quantification of therapeutic monoclonal antibodies (mAbs), focusing on technical challenges in sample treatment and calibration. Therapeutic mAbs are crucial for treating cancer and inflammatory, infectious, and autoimmune diseases. We trace their development from hybridoma technology and the first murine mAbs in 1975 to today's chimeric and fully human mAbs. With increasing commercial relevance, the absolute quantification of mAbs, traceable to an international standard system of units (SI units), has attracted attention from science, industry, and national metrology institutes (NMIs). Quantification of proteotypic peptides after enzymatic digestion using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) has emerged as the most viable strategy, though methods targeting intact mAbs are still being explored. We review peptide-based quantification, focusing on critical experimental steps like denaturation, reduction, alkylation, choice of digestion enzyme, and selection of signature peptides. Challenges in amino acid analysis (AAA) for quantifying pure mAbs and peptide calibrators, along with software tools for targeted MS data analysis, are also discussed. Short explanations within each chapter provide newcomers with an overview of the field's challenges. We conclude that, despite recent progress, further efforts are needed to overcome the many technical hurdles along the quantification workflow and discuss the prospects of developing standardized protocols and certified reference materials (CRMs) for this goal. We also suggest future applications of newer technologies for absolute mAb quantification.</p>","PeriodicalId":8188,"journal":{"name":"Antibodies","volume":"14 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755444/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibodies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/antib14010003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This review describes mass spectrometry (MS)-based approaches for the absolute quantification of therapeutic monoclonal antibodies (mAbs), focusing on technical challenges in sample treatment and calibration. Therapeutic mAbs are crucial for treating cancer and inflammatory, infectious, and autoimmune diseases. We trace their development from hybridoma technology and the first murine mAbs in 1975 to today's chimeric and fully human mAbs. With increasing commercial relevance, the absolute quantification of mAbs, traceable to an international standard system of units (SI units), has attracted attention from science, industry, and national metrology institutes (NMIs). Quantification of proteotypic peptides after enzymatic digestion using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) has emerged as the most viable strategy, though methods targeting intact mAbs are still being explored. We review peptide-based quantification, focusing on critical experimental steps like denaturation, reduction, alkylation, choice of digestion enzyme, and selection of signature peptides. Challenges in amino acid analysis (AAA) for quantifying pure mAbs and peptide calibrators, along with software tools for targeted MS data analysis, are also discussed. Short explanations within each chapter provide newcomers with an overview of the field's challenges. We conclude that, despite recent progress, further efforts are needed to overcome the many technical hurdles along the quantification workflow and discuss the prospects of developing standardized protocols and certified reference materials (CRMs) for this goal. We also suggest future applications of newer technologies for absolute mAb quantification.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Antibodies
Antibodies IMMUNOLOGY-
CiteScore
7.10
自引率
6.40%
发文量
68
审稿时长
11 weeks
期刊介绍: Antibodies (ISSN 2073-4468), an international, peer-reviewed open access journal which provides an advanced forum for studies related to antibodies and antigens. It publishes reviews, research articles, communications and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. Electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material. This journal covers all topics related to antibodies and antigens, topics of interest include (but are not limited to): antibody-producing cells (including B cells), antibody structure and function, antibody-antigen interactions, Fc receptors, antibody manufacturing antibody engineering, antibody therapy, immunoassays, antibody diagnosis, tissue antigens, exogenous antigens, endogenous antigens, autoantigens, monoclonal antibodies, natural antibodies, humoral immune responses, immunoregulatory molecules.
期刊最新文献
A Strategy for Simultaneous Engineering of Interspecies Cross-Reactivity, Thermostability, and Expression of a Bispecific 5T4 x CD3 DART® Molecule for Treatment of Solid Tumors. Phenomenological Modeling of Antibody Response from Vaccine Strain Composition. Targeting CD44 and EpCAM with Antibody Dye Conjugates for the Photoimmunotherapy of Prostate Cancer. Challenges and Insights in Absolute Quantification of Recombinant Therapeutic Antibodies by Mass Spectrometry: An Introductory Review. How Broadly Neutralising Antibodies Are Redefining Immunity to Influenza.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1