Analysis methods for covariate-constrained cluster randomized trials with time-to-event outcomes.

IF 3.9 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES BMC Medical Research Methodology Pub Date : 2025-01-22 DOI:10.1186/s12874-025-02465-w
Amy M Crisp, M Elizabeth Halloran, Matt D T Hitchings, Ira M Longini, Natalie E Dean
{"title":"Analysis methods for covariate-constrained cluster randomized trials with time-to-event outcomes.","authors":"Amy M Crisp, M Elizabeth Halloran, Matt D T Hitchings, Ira M Longini, Natalie E Dean","doi":"10.1186/s12874-025-02465-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cluster randomized trials, which often enroll a small number of clusters, can benefit from constrained randomization, selecting a final randomization scheme from a set of known, balanced randomizations. Previous literature has addressed the suitability of adjusting the analysis for the covariates that were balanced in the design phase when the outcome is continuous or binary. Here we extended this work to time-to-event outcomes by comparing two model-based tests and a newly derived permutation test. A current cluster randomized trial of vector control for the prevention of mosquito-borne disease in children in Mexico is used as a motivating example.</p><p><strong>Methods: </strong>We assessed type I error rates and power between simple randomization and constrained randomization using both prognostic and non-prognostic covariates via a simulation study. We compared the performance of a semi-parametric Cox proportional hazards model with robust variance, a mixed effects Cox model, and a permutation test utilizing deviance residuals.</p><p><strong>Results: </strong>The permutation test generally maintained nominal type I error-with the exception of the unadjusted analysis for constrained randomization-and also provided power comparable to the two Cox model-based tests. The model-based tests had inflated type I error when there were very few clusters per trial arm. All three methods performed well when there were 25 clusters per trial arm, as in the case of the motivating example.</p><p><strong>Conclusion: </strong>For time-to-event outcomes, covariate-constrained randomization was shown to improve power relative to simple randomization. The permutation test developed here was more robust to inflation of type I error compared to model-based tests. Gaining power by adjusting for covariates in the analysis phase was largely dependent on the number of clusters per trial arm.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"25 1","pages":"16"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753003/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Research Methodology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12874-025-02465-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cluster randomized trials, which often enroll a small number of clusters, can benefit from constrained randomization, selecting a final randomization scheme from a set of known, balanced randomizations. Previous literature has addressed the suitability of adjusting the analysis for the covariates that were balanced in the design phase when the outcome is continuous or binary. Here we extended this work to time-to-event outcomes by comparing two model-based tests and a newly derived permutation test. A current cluster randomized trial of vector control for the prevention of mosquito-borne disease in children in Mexico is used as a motivating example.

Methods: We assessed type I error rates and power between simple randomization and constrained randomization using both prognostic and non-prognostic covariates via a simulation study. We compared the performance of a semi-parametric Cox proportional hazards model with robust variance, a mixed effects Cox model, and a permutation test utilizing deviance residuals.

Results: The permutation test generally maintained nominal type I error-with the exception of the unadjusted analysis for constrained randomization-and also provided power comparable to the two Cox model-based tests. The model-based tests had inflated type I error when there were very few clusters per trial arm. All three methods performed well when there were 25 clusters per trial arm, as in the case of the motivating example.

Conclusion: For time-to-event outcomes, covariate-constrained randomization was shown to improve power relative to simple randomization. The permutation test developed here was more robust to inflation of type I error compared to model-based tests. Gaining power by adjusting for covariates in the analysis phase was largely dependent on the number of clusters per trial arm.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Medical Research Methodology
BMC Medical Research Methodology 医学-卫生保健
CiteScore
6.50
自引率
2.50%
发文量
298
审稿时长
3-8 weeks
期刊介绍: BMC Medical Research Methodology is an open access journal publishing original peer-reviewed research articles in methodological approaches to healthcare research. Articles on the methodology of epidemiological research, clinical trials and meta-analysis/systematic review are particularly encouraged, as are empirical studies of the associations between choice of methodology and study outcomes. BMC Medical Research Methodology does not aim to publish articles describing scientific methods or techniques: these should be directed to the BMC journal covering the relevant biomedical subject area.
期刊最新文献
Bayesian dynamic borrowing in group-sequential design for medical device studies. Measuring adversity in the ABCD® Study: systematic review and recommendations for best practices. Sample size recalculation based on the overall success rate in a randomized test-treatment trial with restricting randomization to discordant pairs. Using artificial intelligence for systematic review: the example of elicit. A flexible framework for local-level estimation of the effective reproductive number in geographic regions with sparse data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1