{"title":"Artificial intelligence streamlines scientific discovery of drug-target interactions.","authors":"Yuxin Yang, Feixiong Cheng","doi":"10.1111/bph.17427","DOIUrl":null,"url":null,"abstract":"<p><p>Drug discovery is a complicated process through which new therapeutics are identified to prevent and treat specific diseases. Identification of drug-target interactions (DTIs) stands as a pivotal aspect within the realm of drug discovery and development. The traditional process of drug discovery, especially identification of DTIs, is marked by its high costs of experimental assays and low success rates. Computational methods have emerged as indispensable tools, especially those employing artificial intelligence (AI) methods, which could streamline the process, thereby reducing costs and time consumption and potentially increasing success rates. In this review, we focus on the application of AI techniques in DTI prediction. Specifically, we commence with a comprehensive overview of drug discovery and development, along with systematic prediction and validation of DTIs. We proceed to highlight the prominent databases and toolkits used in developing AI methods for DTI prediction, as well as with methodologies for evaluating their efficacy. We further extend the exploration into three primary types of state-of-the-art AI methods used in DTI prediction, including classical machine learning, deep learning and network-based methods. Finally, we summarize the key findings and outline the current challenges and future directions that AI methods face in scientific drug discovery and development.</p>","PeriodicalId":9262,"journal":{"name":"British Journal of Pharmacology","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/bph.17427","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Drug discovery is a complicated process through which new therapeutics are identified to prevent and treat specific diseases. Identification of drug-target interactions (DTIs) stands as a pivotal aspect within the realm of drug discovery and development. The traditional process of drug discovery, especially identification of DTIs, is marked by its high costs of experimental assays and low success rates. Computational methods have emerged as indispensable tools, especially those employing artificial intelligence (AI) methods, which could streamline the process, thereby reducing costs and time consumption and potentially increasing success rates. In this review, we focus on the application of AI techniques in DTI prediction. Specifically, we commence with a comprehensive overview of drug discovery and development, along with systematic prediction and validation of DTIs. We proceed to highlight the prominent databases and toolkits used in developing AI methods for DTI prediction, as well as with methodologies for evaluating their efficacy. We further extend the exploration into three primary types of state-of-the-art AI methods used in DTI prediction, including classical machine learning, deep learning and network-based methods. Finally, we summarize the key findings and outline the current challenges and future directions that AI methods face in scientific drug discovery and development.
期刊介绍:
The British Journal of Pharmacology (BJP) is a biomedical science journal offering comprehensive international coverage of experimental and translational pharmacology. It publishes original research, authoritative reviews, mini reviews, systematic reviews, meta-analyses, databases, letters to the Editor, and commentaries.
Review articles, databases, systematic reviews, and meta-analyses are typically commissioned, but unsolicited contributions are also considered, either as standalone papers or part of themed issues.
In addition to basic science research, BJP features translational pharmacology research, including proof-of-concept and early mechanistic studies in humans. While it generally does not publish first-in-man phase I studies or phase IIb, III, or IV studies, exceptions may be made under certain circumstances, particularly if results are combined with preclinical studies.