Development and functional evaluation of a psoralen-conjugated nucleoside mimic for triplex-forming oligonucleotides.

IF 5.9 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Communications Chemistry Pub Date : 2025-01-22 DOI:10.1038/s42004-025-01416-2
Yu Mikame, Haruki Toyama, Chikara Dohno, Takehiko Wada, Asako Yamayoshi
{"title":"Development and functional evaluation of a psoralen-conjugated nucleoside mimic for triplex-forming oligonucleotides.","authors":"Yu Mikame, Haruki Toyama, Chikara Dohno, Takehiko Wada, Asako Yamayoshi","doi":"10.1038/s42004-025-01416-2","DOIUrl":null,"url":null,"abstract":"<p><p>Psoralen-conjugated triplex-forming oligonucleotides (Ps-TFOs) have been employed for the photodynamic regulation of gene expression by the photo-cross-linking of psoralen with the target DNA. However, stable triplex formation requires a consecutive purine base sequence in one strand of the target DNA duplexes. The pyrimidine-base interruption in the consecutive purine base sequence drastically decreases the thermodynamic stability of the corresponding triplex, which hampers the TFO application. Here, we propose a design of the Ps-TFO for stable triplex formation with target DNA sequences containing pyrimidine-base interruptions under physiological conditions. This Ps-TFO, named 1'(one)-psoralen-conjugated triplex-forming oligonucleotide (OPTO), incorporates a synthesized nucleoside mimic 1'-psoralen-conjugated deoxyribose to increase the thermodynamic stability of the corresponding triplex by the intercalation of psoralen. The triplex-forming abilities of the OPTO were successfully demonstrated in combination with LNA and 5-methylcytosine, indicating that the use of OPTO will expand the range of the target sequences of TFO for photodynamic gene regulation.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"18"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754458/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01416-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Psoralen-conjugated triplex-forming oligonucleotides (Ps-TFOs) have been employed for the photodynamic regulation of gene expression by the photo-cross-linking of psoralen with the target DNA. However, stable triplex formation requires a consecutive purine base sequence in one strand of the target DNA duplexes. The pyrimidine-base interruption in the consecutive purine base sequence drastically decreases the thermodynamic stability of the corresponding triplex, which hampers the TFO application. Here, we propose a design of the Ps-TFO for stable triplex formation with target DNA sequences containing pyrimidine-base interruptions under physiological conditions. This Ps-TFO, named 1'(one)-psoralen-conjugated triplex-forming oligonucleotide (OPTO), incorporates a synthesized nucleoside mimic 1'-psoralen-conjugated deoxyribose to increase the thermodynamic stability of the corresponding triplex by the intercalation of psoralen. The triplex-forming abilities of the OPTO were successfully demonstrated in combination with LNA and 5-methylcytosine, indicating that the use of OPTO will expand the range of the target sequences of TFO for photodynamic gene regulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
期刊最新文献
Chemical reactivity of RNA and its modifications with hydrazine. Measurement of phospholipid lateral diffusion at high pressure by in situ magic-angle spinning NMR spectroscopy. Spin-state effect on the efficiency of a post-synthetic modification reaction on a spin crossover complex. Women in chemistry: Q&A with Dr Qi Hao. Women in chemistry: Q&A with Professor Mónica H. Pérez-Temprano.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1