{"title":"Exploring Genetic and Receptor-Based Dopaminergic Strategies for Antidepressant Drug Development.","authors":"Arzoo Pannu, Ramesh K Goyal","doi":"10.2174/0115665232334693250110175517","DOIUrl":null,"url":null,"abstract":"<p><p>The dopamine (DA) system is central to mood regulation, motivation, and reward processing, making it a critical focus for understanding Major Depressive Disorder (MDD). While the dopaminergic system's role in MDD pathophysiology has been acknowledged, gaps remain in linking specific receptor subtypes and genetic factors to depression-like phenotypes. This study explores the interplay between dopamine receptor subtypes (D1-D5) and associated genetic variations, particularly focusing on receptor heterodimers and polymorphisms influencing dopamine biosynthesis, signalling, and metabolism. A comprehensive review of molecular mechanisms highlights key findings: alterations in D1-D2 heterodimers contribute to mood dysregulation; D3 receptor downregulation correlates with depressive behaviour; and genetic polymorphisms, including those in tyrosine hydroxylase and dopamine transporter (DAT) genes, influence dopamine levels and receptor functions. Emerging data from neuroimaging and animal models confirm the pivotal role of dopamine receptor subtypes in MDD, offering insights into their therapeutic targeting. Here, we show that dopaminergic dysfunction underpins MDD's pathophysiology, with receptor-specific mechanisms presenting novel drug targets. Understanding these pathways facilitates precision medicine approaches, bridging the gap between genetic predisposition and receptor pharmacology, and paving the way for tailored antidepressant strategies with improved efficacy and reduced side effects.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665232334693250110175517","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The dopamine (DA) system is central to mood regulation, motivation, and reward processing, making it a critical focus for understanding Major Depressive Disorder (MDD). While the dopaminergic system's role in MDD pathophysiology has been acknowledged, gaps remain in linking specific receptor subtypes and genetic factors to depression-like phenotypes. This study explores the interplay between dopamine receptor subtypes (D1-D5) and associated genetic variations, particularly focusing on receptor heterodimers and polymorphisms influencing dopamine biosynthesis, signalling, and metabolism. A comprehensive review of molecular mechanisms highlights key findings: alterations in D1-D2 heterodimers contribute to mood dysregulation; D3 receptor downregulation correlates with depressive behaviour; and genetic polymorphisms, including those in tyrosine hydroxylase and dopamine transporter (DAT) genes, influence dopamine levels and receptor functions. Emerging data from neuroimaging and animal models confirm the pivotal role of dopamine receptor subtypes in MDD, offering insights into their therapeutic targeting. Here, we show that dopaminergic dysfunction underpins MDD's pathophysiology, with receptor-specific mechanisms presenting novel drug targets. Understanding these pathways facilitates precision medicine approaches, bridging the gap between genetic predisposition and receptor pharmacology, and paving the way for tailored antidepressant strategies with improved efficacy and reduced side effects.
期刊介绍:
Current Gene Therapy is a bi-monthly peer-reviewed journal aimed at academic and industrial scientists with an interest in major topics concerning basic research and clinical applications of gene and cell therapy of diseases. Cell therapy manuscripts can also include application in diseases when cells have been genetically modified. Current Gene Therapy publishes full-length/mini reviews and original research on the latest developments in gene transfer and gene expression analysis, vector development, cellular genetic engineering, animal models and human clinical applications of gene and cell therapy for the treatment of diseases.
Current Gene Therapy publishes reviews and original research containing experimental data on gene and cell therapy. The journal also includes manuscripts on technological advances, ethical and regulatory considerations of gene and cell therapy. Reviews should provide the reader with a comprehensive assessment of any area of experimental biology applied to molecular medicine that is not only of significance within a particular field of gene therapy and cell therapy but also of interest to investigators in other fields. Authors are encouraged to provide their own assessment and vision for future advances. Reviews are also welcome on late breaking discoveries on which substantial literature has not yet been amassed. Such reviews provide a forum for sharply focused topics of recent experimental investigations in gene therapy primarily to make these results accessible to both clinical and basic researchers. Manuscripts containing experimental data should be original data, not previously published.